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Abstract
We consider differentially private algorithms for convex empirical risk minimization (ERM).

Differential privacy (Dwork et al., 2006b) is a recently introduced notion of privacy which guaran-
tees that an algorithm’s output does not depend on the data of any individual in the dataset. This is
crucial in fields that handle sensitive data, such as genomics, collaborative filtering, and economics.
Our motivation is the design of private algorithms for sparse learning problems, in which one aims
to find solutions (e.g., regression parameters) with few non-zero coefficients. To this end:

(a) We significantly extend the analysis of the “objective perturbation” algorithm of Chaudhuri
et al. (2011) for convex ERM problems. We show that their method can be modified to use less
noise (be more accurate), and to apply to problems with hard constraints and non-differentiable
regularizers. We also give a tighter, data-dependent analysis of the additional error introduced by
their method.

A key tool in our analysis is a new nontrivial limit theorem for differential privacy which is of
independent interest: if a sequence of differentially private algorithms converges, in a weak sense,
then the limit algorithm is also differentially private.

In particular, our methods give the best known algorithms for differentially private linear re-
gression. These methods work in settings where the number of parameters p is less than the number
of samples n.

(b) We give the first two private algorithms for sparse regression problems in high-dimensional
settings, where p is much larger than n. We analyze their performance for linear regression:
under standard assumptions on the data, our algorithms have vanishing empirical risk for n =
poly(s, log p) when there exists a good regression vector with s nonzero coefficients. Our algo-
rithms demonstrate that randomized algorithms for sparse regression problems can be both stable
and accurate – a combination which is impossible for deterministic algorithms.

1. Introduction

Problem Setting Given a data set (d1, ..., dn) of n individuals, where each observation di lies in
a fixed domain T , consider the following p-dimensional convex optimization problem:

θ̂ ∈ arg minθ∈F
1
n(
∑n

i=1 `(θ; di) + r(θ)) , (1)

where `(θ; di) is a real-valued function that is convex in the first parameter θ ∈ Rp for every d ∈ T ,
the regularizer r is an arbitrary convex function and the constraint F ⊆ Rp is a closed convex set.
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This type of program captures a variety of empirical risk minimization (ERM ) problems. For
example, when r = 0, it can describe the MLE’s for linear regression (where `(θ; d) = (y−〈x, θ〉)2

and d = (x, y))) and logistic regression (where `(θ; d) = log(1 + exp(y〈x, θ〉))). In the Lasso,
widely used for selecting a sparse estimator for linear regression, one adds the regularizer r(θ) =
Λ‖θ‖1 or constrains the solution to F = {θ : ‖θ‖1 ≤ t}; here Λ and t are fixed real numbers.

The regression literature distinguishes two settings depending on the relationship between n (the
number of records) and p (the dimension). In the classical low-dimensional setting, p is constant
or grows polynomially slower than n. In the high-dimensional setting, p grows much faster than n.
In order for ERM solutions to be meaningful in the high-dimensional setting, one typically has to
look for solutions θ with some additional structure, such as sparsity (for vectors) or low rank (for
matrices). To make the corresponding optimization problem tractable, the structural constraint is
often replaced with a convex regularizer or constraint, such as the `1 or nuclear norms. This is a
prolific area of research; see Negahban et al. (2010) for a brief survey.

Differential privacy Learning algorithms are frequently run on sensitive data (say, genomic data
or email transcripts). Although there is substantial social benefit to publishing the results of an
analysis over such data, there is a significant risk of inadvertently leaking information about the
entries in the data set.

A recent line of work seeks to place private data analysis on rigorous, principled foundations.
Our algorithms satisfy differential privacy (Dwork et al., 2006b; Dwork, 2006), which emerged from
this line of work and is now widely studied in computer science and statistics. See Raskhodnikova
and Smith (2010); Roth (2011) for links to papers and surveys. Intuitively, differential privacy
requires that datasets differing in only one entry induce similar distributions on the output of a
(randomized) algorithm. This implies that an attacker will draw essentially the same conclusions
about an individual whether or not that individual’s data was used – even if many records are known
a priori to the attacker. See Dwork (2006); Ganta et al. (2008); Dwork and Naor (2010); Kifer and
Machanavajjhala (2011) for further discussion of the implications of differential privacy.

Definition 1 (Differential privacy Dwork et al. (2006b,a)) A randomized algorithm A is (ε, δ)-
differentially private if for any two datasets D and D′ drawn from a domain T with |D∆D′| = 1
(∆ being the symmetric difference), and for all (Borel) sets O ⊆ Range(A) the following holds:
Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] + δ.

Differentially private algorithms cannot be deterministic and in particular cannot always output
the exact minimizer from (1). Our goal is to find algorithms that solve convex ERM with as little
additional empirical risk as possible.

Related Work The convex ERM setting considered here was explicitly studied by Chaudhuri et al.
(2011); Rubinstein et al. (2009), though variants and special cases had been considered previously.
They considered two basic techniques: output perturbation (studied by both papers), where one
releases the output θ̂ with additive noise, and objective perturbation (introduced by Chaudhuri et al.
(2011) and further studied by Dwork et al. (2009)), where one releases the (exact) minimizer of a
perturbed version of the objective function.

There also exist other techniques for specific convex optimization problems such as order statis-
tics (Nissim et al., 2007; Dwork and Lei, 2009) and linear regression (Dwork and Lei, 2009). The
sample-and-aggregate framework (Nissim et al., 2007) is a generic technique for designing private
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algorithms, which can be instantiated in many different ways. Smith (2011) applied it to a class of
statistical problems that includes low-dimensional ERM.

The existing analysis of output perturbation requires fewer assumptions than that of objective
perturbation. Under the minimal set of assumptions that allow both techniques to apply, the worst-
case theoretical guarantees on the two techniques’ performance are very similar (Chaudhuri et al.,
2011), and are better than the guarantees one gets for the techniques of Dwork and Lei (2009);
Smith (2011). However, in experiments objective perturbation performed much better than objective
perturbation. This phenomenon was partly explained by Dwork et al. (2009), who showed that in
logistic regression, objective perturbation distorts the minimizer much less than output perturbation
on “nice” data.

All the previous techniques work in the low-dimensional regime. When p � n, they fail to
provide consistent error estimates.

1.1. Our Contributions

Our two main contributions are improving the objective perturbation technique, and providing the
first algorithms for private high-dimensional sparse regression and feature selection.

1.1.1. IMPROVING OBJECTIVE PERTURBATION

With the objective perturbation technique, instead of minimizing the empirical loss Ĵ(θ;D) =
1
n(
∑

i `(θ; di) + r(θ)), one considers a linear perturbation Jpriv(θ;D) = Ĵ(θ;D) + 〈B, θ〉, where
B is a random vector drawn according to a gamma distribution. The output of the algorithm is the
minimizer of Jpriv(·;D). We improve the treatment of Chaudhuri et al. (2011) in several respects:

More Accurate Objective Perturbation We show that drawing the perturbation B from a Gaus-
sian (instead of gamma) distribution, leads to a Ω̃(

√
p) improvement in the utility guarantees of the

objective algorithm, at the cost of relaxing the privacy guarantee from (ε, 0)- to (ε, δ)-differential
privacy for negligible δ. When δ < 1/n2, the relaxed guarantee has very similar semantics to the
original (Ganta et al., 2008). This result parallels a similar improvement that is possible for out-
put perturbation (see, e.g., Dwork et al. (2006a)), though the privacy and utility proofs are quite
different.

Generalized Privacy Analysis and a Limit Theorem for Differential Privacy We also show
that objective perturbation (with either Gaussian or gamma perturbation) continues to be private
even when the convex regularizer r is nondifferentiable and when the parameter vector θ is con-
strained to a closed convex set F. As mentioned above, the privacy proof of CMS required that r be
differentiable and θ be unconstrained.

Our analysis greatly extends the range of problems to which objective perturbation applies. For
example, it allows one to use objective perturbation for convex programs like the Lasso (where the
regularizer r is the L1 norm) and nuclear norm regularized minimization (Negahban et al., 2010),
which was earlier not possible. The extension is also critical for applying the objective perturbation
technique to linear regression.

The main tool we use in the above analysis is a limit theorem for differential privacy. The
theorem states that if a sequence of (ε, δ)-differentially private algorithms A1,A2, . . . converges in
a weak sense, then the limiting algorithm A = limi→∞Ai is also (ε, δ)-differentially private. Note
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that the probabilistic behavior of A can be very different from any of the Ai (see Example 1). We
feel this tool is likely to have other applications.

The idea behind our generalized analysis of objective perturbation is to approximate the con-
strained, nondifferentiable problem in (1) with a sequence of unconstrained, differentiable problems,
and apply our limit theorem to the resulting sequence of algorithms. The difficulty is in ensuring
that the resulting problems are all convex (so that the previous analysis applies) and converge in an
appropriate sense to the original problem.

Data-dependent Utility Analysis Finally, we provide an improved, data-dependent utility analy-
sis. Our approach is inspired by the analysis of Dwork et al. (2009), which was specific to logistic
regression. We show that for “nice” data, namely, data sets for which the loss function is strongly
convex in a neighborhood of its minimizer, objective perturbation has much better error guarantees
than in the worst case (roughly, a factor of

√
p lower or a typical setting of parameters). The as-

sumption of strong convexity is common in the optimization literature (e.g., Nocedal and Wright,
2000; Negahban et al., 2010).

Case Study: Linear Regression We illustrate our results with an application to low-dimensional
linear regression. For a typical setting of parameters, we obtain a factor of p improvement in the
expected additional risk compared to previous approaches.

1.1.2. SPARSE REGRESSION

The second part of our paper initiates the study of private algorithms for high-dimensional learning
with structural constraints. Specifically, we consider algorithms for linear regression that seek a
sparse vector of regression coefficients. As mentioned above, this is a well-studied problem (without
privacy considerations) and a popular approach is to regularize the standard ERM with the `1 norm
of θ (the “Lasso”). The resulting program is convex (making it computationally tractable) and
produces sparse solutions with good generalization error in a variety of settings. Roughly, the Lasso
performs well when there is an s-sparse vector θsp that labels the data well and n = ω(s log p).

Unfortunately, none of the existing approaches to private convex ERM (including our variant
of objective perturbation) perform well on the Lasso when p � n, never mind when n grows as
log p. Nevertheless, we give two algorithms that produce consistent, sparse estimates θsp when n
is a least a polynomial in s and log p. The algorithms are not specific to linear regression, but we
analyze them in that setting for convenience. We take a two stage approach: we first privately select
a support set of small size and then run the objective perturbation algorithm to select a parameter
vector with support on this set. We provide two algorithms for the first stage: 1. Superpolynomial
time, via exponential sampling: We apply the exponential mechanism (McSherry and Talwar, 2007)
to sample a good support set of size s. To instantiate the mechanism, we define the “score” of a set
of features Γ to be the empirical loss of the best parameter vector with support in Γ. This algorithm
is roughly the nonprivate analogue of exhaustive search over all subsets (“L0 minimization” (Wipf
and Rao, 2005)). The algorithm is inefficient but provides a baseline for comparison. 2. Polynomial
time, via sample-and-aggregate: Following the sample and aggregate framework (Nissim et al.,
2007), the algorithm splits the data set into disjoint blocks, selects a support set for each block and
then aggregates the results via a novel “voting” aggregation algorithm. The algorithm works under
the assumption that many random sub-samples of the data generate the same support set.

In the context of linear regression (and under typical assumptions), the algorithms produce con-
sistent estimates of the support of θsp when n = ω(s3 log p) and n = ω(s2 log2 p), respectively.
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Designing algorithms that match the performance of the best nonprivate algorithms, even asymptot-
ically, remains an interesting open problem.

Structure of this paper Section 2 details our results on objective perturbation, while Section 3
discusses sparse regression. A summary of notation is included in Appendix A for convenience.
The remaining appendices provide omitted details and proofs.

2. Differentially Private Convex Optimization

2.1. Tool: A limit theorem for differentially private algorithms

Establishing that an algorithm A satisfies differential privacy is often a difficult task. In this section
we present a new proof technique for deriving the privacy properties of A from a sequence of
differentially private algorithmsAi. The power of this technique is that we only require a very weak
form of convergence; in fact, the limiting probabilistic behavior of theAi can be quite different from
the behavior ofA. Our results are summarized in the following theorem (see Appendix B for proof).

Theorem 1 (Successive Approximation) Let b be a Rp-valued random variable. Let A be a ran-
domized algorithm induced by the random variable b and some deterministic function φ – that is,
A(D) ≡ φ(D, b). Let A1,A2, . . . be a sequence of randomized algorithms, where each Ai is
induced by b and some deterministic function φi (i.e. Ai(D) ≡ φi(D, b)). If A1,A2, ... are all
(ε, δ)-differentially private and limi→∞ φ

i(D, b) = φ(D, b) (i.e. pointwise convergence for all D
and realized values of b), then A is also (ε, δ)-differentially private.

It is important to note that differential privacy is a condition on Pr[φi(D, b) ∈ O] (which is the
same as P (Ai(D) ∈ O)) yet the pointwise convergence limi→∞ φ

i(D, b) → φ(D, b) required by
Theorem 1 is too weak to guarantee that Pr[φi(D, b) ∈ O]→ Pr[φ(D, b) ∈ O]. In fact, the limiting
probabilistic behavior (if it exists) of φi(D, b) can be quite different from the probabilistic behavior
of φ(D, b). Nevertheless, Theorem 1 establishes that A still inherits differential privacy properties
from the Ai’s. Consider the following example:

Example 1 Let θ ∈ Rp be a parameter vector and let L̂(θ;D) be a strongly convex, twice con-
tinuously differentiable loss function. Let φ(D, b) ≡ argminθ L̂(θ;D) + 1

n(bT θ + ‖θ‖1), which is
an L1-regularized minimization problem (with random perturbation bT θ). We can approximate it
(see Appendix C.2) with a sequence φi(D, b) ≡ argminθ L̂(θ;D) + 1

n(bT θ + ri(θ)) where ri is
an infinitely differentiable regularizer. If b has a continuous probability distribution, then for each
fixed D the distribution of φi(D, b) has a density (Chaudhuri et al. (2011)) but φ(D, b) does not.
In fact, the subdifferentials of the L1 regularizer ensure that for each D, φ(D, b) can take values
in a lower-dimensional submanifold of Rp with positive probability (which is not possible for the
φi(D, b) because of their densities).

2.2. Application: Private Constrained Optimization

We use Theorem 1 to extend the applicability of the differentially private empirical risk minimiza-
tion framework of Chaudhuri et al. (2011) to allow hard convex constraints and non-differentiable
regularizers. Consider the convex program: argminθ∈F L̂(θ;D) + 1

nr(θ), where F ⊆ Rp is a closed
convex set, D = {d1, . . . , dn} is a dataset, L̂ is a twice-continuously differentiable convex loss
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Algorithm 1 Generalized Objective Perturbation Mechanism ( Obj-Pert )
Require: dataset D = {d1, . . . , dn}, privacy parameters ε and δ ( δ = 0 for ε-differential pri-

vacy), convex regularizer r, a convex domain F ⊆ Rp, convex loss function L̂(θ;D) =
1
n

∑n
i=1 `(θ; di) with continuous Hessian, ‖ 5 `(θ; d)‖2 ≤ ζ (for all d ∈ P and θ ∈ F),

and upper bound λ on the eigenvalues of52`(θ; d) (for all d and for all θ ∈ F).
1: Set ∆ ≥ 2λ

ε .
2: if require ε-differential privacy then
3: sample b ∈ Rp from the Gamma distribution with density ν1(b; ε, ζ) ∝ e−ε

‖b‖2
2ζ

4: else if require (ε, δ)-differential privacy then
5: sample b ∈ Rp from ν2(b; ε, δ, ζ) = N

(
0,

ζ2(8 log 2
δ

+4ε)

ε2
Ip×p

)
.

6: end if
7: return θpriv ≡ arg minθ∈F L̂(θ;D) + 1

nr(θ) + ∆
2n‖θ‖

2
2 + bT θ

n .

function of the form L̂(θ;D) = 1
n

∑n
i=1 `(θ; di) and r is any (possibly non-differentiable) convex

regularizer. When the objective function is γ/n-strongly convex (γ ≥ 0) for all datasets of size n,
one adds a quadratic term (∆−γ)+

2n ‖θ‖22, where ∆ depends on the largest possible eigenvalue of the
Hessian of `(θ, di). This ensures that the objective function is ∆/n-strongly convex and reduces the
influence of any single data point. For privacy, a random linear perturbation term bT θ

n is then added
to the objective function. The full mechanism is described in Algorithm 1. Note that to simplify the
discussion, we can w.l.o.g. assume γ = 0 (i.e., the initial objective function is not strongly convex).

Theorem 2 (Private Convex Optimization via Objective Perturbation) Let F be a closed con-
vex subset of Rp. Let D = {d1, . . . , dn} be a dataset, let L̂(θ;D) = 1

n

∑n
i=1 `(θ; di) be a convex

loss function with continuous Hessian, let ζ be the upper bound on ‖ 5 `(θ; d)‖2 and let λ be an
upper bound on the eigenvalues of 52`(θ; d) (for all d and for all θ ∈ F), and let r be a convex
function. Assume that for all θ ∈ F and for all d the rank of52`(θ; d) is at most one.

Then Algorithm 1 is (ε, 0)-differentially private when b has gamma density ν1 and (ε, δ)-differentially
private when b has Gaussian density ν2.

See Appendix C for the proof. The main idea is to use Theorem 1 twice. We first consider un-
constrained optimization and convolve the regularizer r with a sequence K1,K2, . . . of infinitely
differentiable kernels. This results in a sequence of smooth optimization problems that can be solved
differentially privately by the results of Chaudhuri et al. (2011). We prove pointwise convergence
of their differentially private solutions and then invoke Theorem 1. For constrained optimization,
we replace the hard constraint θ ∈ F with a sequence of soft constraints by adding penalties for
θ /∈ F that depend on the distance from θ to F. We again show pointwise convergence and invoke
Theorem 1.

2.2.1. UTILITY ANALYSIS

The following lemma bounds the empirical risk (i.e., Ĵ(θpriv;D)− Ĵ(θ̂;D)) of Algorithm 1 (Algo-
rithm Obj-Pert ).
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Lemma 3 (Empirical risk) Let θ̂ be the minimizer of the empirical objective function Ĵ(θ;D) over
the closed convex set F and let θpriv be the output of Algorithm 1. We have Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
2‖b‖22
∆n + ∆

2n‖θ̂‖
2
2.

The proof of this lemma can be found in Appendix D.1.1. Using the tail bounds for the noise
distributions used in Algorithm Obj-Pert , we obtain the following theorem as a corollary of the
above lemma. A detailed proof of this theorem is given Appendix D.1.2.

Theorem 4 (Theorem 26, special case) Assume that ‖ 5 `(θ; d)‖2 ≤ ζ (for all θ ∈ F and for all
d ∈ P). Let λ be the maximum eigenvalue bound on52`.

1. (Chaudhuri et al., 2011) With Gamma density ν1, setting ∆ = Θ
(
ζp log p

ε‖θ̂‖2

)
and assuming

∆ ≥ λ
2ε , we have E

[
Ĵ(θpriv;D)− Ĵ(θ̂;D)

]
= O

(
ζ‖θ̂‖2p log p

εn

)
.

2. (This paper) With Gaussian density ν2, setting ∆ = Θ

(√
ζ2p log(1/δ)

ε‖θ̂‖2

)
and assuming ∆ ≥

λ
2ε , we have E

[
Ĵ(θpriv;D)− Ĵ(θ̂;D)

]
= O

(
ζ‖θ̂‖2
√
p log(1/δ)

εn

)
.

Note that the empirical risk bounds in Theorem 4 are for the ideal choices of ∆. Optimal ∆ depends
on the L2 norm of the true minimizer (θ̂) of Ĵ . In practice, if the exact bound on ‖θ̂‖2 is not known,
then one can replace it with a loose upper bound, e.g., a bound on the diameter of the convex set F.

The main takeaway from Theorem 4 is that, ignoring the privacy parameters (ε, δ), the empirical
risk bound for the Gamma distribution (ν1) is at least

√
p times higher than for Gaussian distribution

(ν2). Intuitively, this gap arises from the fact that the vectors drawn from ν2 are more tightly
concentrated around the mean as compared to ν1. For an application of the above theorem to linear
regression, see Section 2.2.3.

For Generalized Linear Models (GLM), using a generic conversion theorem from empirical risk
to generalization error (Shalev-Shwartz et al., 2009, Theorem 2), one can directly obtain a bound
on the generalization error (J̄(θpriv;P)− J̄(θ̄;P)). (See Appendix D.2).

In all utility guarantees in this paper, using the Gamma noise distribution results in an
√
p

increase in the error. So in the rest of our discussion, we will only concentrate on Gaussian noise
distribution and hence guarantee (ε, δ)-differential privacy with δ > 0.

2.2.2. REFINED UTILITY GUARANTEES UNDER STRONGER ASSUMPTIONS

In this section, we provide refined utility guarantees for Algorithm Obj-Pert (Algorithm 1) based
on stronger assumptions on the underlying dataset. Our analysis is inspired by the work of Dwork
et al. (2009) which specifically analyzes logistic regression under such a setting.

For the simplicity of exposition, assume the empirical objective function Ĵ(θ;D) equals the
empirical loss function L̂(θ;D), i.e., the regularizer r(θ) is set to zero. Suppose the empirical loss
function L̂ is (η/n)-strongly convex (for some constant η) within a ball of radius ψ (which will be
fixed later) around θ̂, where θ̂ is the minimizer of L̂.

Theorem 5 bounds the empirical risk based on this stronger assumption on the loss function . In
order to make the result more informative, we state a special case of Theorem 31 (Appendix E.2)
below. In the following theorem we have assumed the following.
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Assumption 1 Assume: i)η = Ω(λn/p), ii) ψ ≥ p3/2ζ
√

log(1/δ)

λnε2
+
√

p
n‖θ̂‖2, iii) n ≥ p2.

Intuitively, the assumption on η makes sense because if each of52`(θ; di) is a rank-one matrix
with an eigenvalue λ > 0 and the eigenvalues of 52L̂ are spread out across all dimensions, then
we would expect

∑n
i=1 `(θ; di) to have minimum eigenvalue of Σ to be Ω(λn/p) (since there are p

dimensions).

Theorem 5 (Theorem 31, special case) Let ∆ = 2λ/ε (where λ is the bound on the maximum
eigenvalue of52`). Under Assumption 1, using Gaussian density ν2, we have E

[
L̂(θpriv;D)− L̂(θ̂;D)

]
=

O
(

1
nε

(
p2ζ2 log(1/δ)

λnε + λ‖θ̂‖22
))

.

The proof is given in Appendix E.2. We now apply this theorem to linear regression to reduce the
error bound by a factor of

√
p.

2.2.3. CASE STUDY: LINEAR REGRESSION

Consider the linear regression problem y = Xθ∗+w, where the design matrixX is in Rn×p, output
vector y is in Rn×1, parameter vector θ∗ is in Rp, and w ∈ Rn×1 is a noise vector. We define the
loss function for any given θ as L̂(θ;D) = 1

2n

∑n
i=1(yi− 〈Xi, θ〉)2, where yi is the i-th entry in the

vector y and Xi is the i-th row of the matrix X . The setting we are interested in is where each row
of the design matrix X has L2 norm at most

√
p and the parameter vector θ∗ has L2 norm at most√

p. Under this setting we obtain the following empirical risk bounds (Table 1). (For a detailed
discussion on the setting of parameters that lead to the following bounds, see Section H.)

Section Theorem Empirical risk (ignoring privacy parameters)
Section 2.2.1 Theorem 4 (Part 1) Õ(p3/n)

Section 2.2.1 Theorem 4 (Part 2) Õ(p5/2/n)

Section 2.2.2 Theorem 5 Õ(p2/n)

Table 1: Empirical risk bounds for linear regression in the “small p, large n” regime.

3. Privacy preserving sparse regression

In sparse regression, we try to estimate θsp ∈ arg minθ∈F,‖θ‖0≤s L̂(θ;D), where F is a convex set
and s is the sparsity parameter. We are typically interested in the setting where s < n and n � p.
In order to obtain a private estimate for θsp, we use the following two stage approach (Algorithm 2):

Algorithm 2 Meta-algorithm for sparse linear regression

1: Output Γ̂, an estimate of the support for the parameter vector θsp.
2: Privately minimize the loss function L̂(θ;D) over the convex set F restricted to support Γ̂ using

Algorithm Obj-Pert (Algorithm 1).

We propose two algorithms which allow us to obtain good estimate for the support of the param-
eter vector θsp. The first algorithm (Algorithm Exp-mech ) is based on the Exponential Mechanism
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by McSherry and Talwar (2007). The second algorithm (Algorithm Samp-Agg ) is based on the
Sample and Aggregate Framework by Nissim et al. (2007).

These algorithms work under incomparable sets of assumptions. Roughly, Algorithm Exp-
mech requires a bounded loss function, while Algorithm Samp-Agg works assumes that most ran-
dom sub-samples of the dataset will be correctly labeled by parameter vectors that share a common
small support.

To provide a comparison, we analyze the performance of these two algorithms on a class of
widely studied linear regression problems (described in Section 3.1), which satisfy all these sets of
assumptions. The algorithms and their performance guarantees are given in Sections 3.2 and 3.3.
We often mention restricting the convex set F to some support Γ (which we represent by FΓ). By
restriction we mean the set θ ∈ F whose support lie in Γ: {θ ∈ F : supp(θ) ⊆ Γ}.

3.1. Case Study: Sparse Linear Regression

To compare the performance of our two algorithms, we consider their performance on a class of
“well-behaved” linear regression instances. This class is very similar to those used in the literature to
analyze the LASSO and related non-private approaches to the sparse regression (see, e.g., Negahban
et al. (2010)).

We look at the following linear system: y = Xθ∗ + w, where the design matrix X is in Rn×p,
output vector y is in Rn×1, s-sparse parameter vector θ∗ is in Rp, and w ∈ Rn×1 is a noise vector.
We define the loss function for any given θ as L̂(θ;D) = 1

2n‖y −Xθ‖
2
2.

In the following, we define what it means to be a “well-behaved” dataset. We use this definition
to precisely state the assumptions on the problem.

Definition 2 ((s, σ, Ψ)-well behaved) A pair (M,w), where M is a n′ × p design matrix and w is
a n′-dimensional vector, is (s, σ,Ψ)-well behaved if:

1. ∀i, ‖Mi|s ‖2 ≤
√
s, where Mi|s denotes the largest s entries of the i-th row of M .

2. ∀j, ‖cj‖2 ≤
√
n′, where cj is the j-th column of M .

3. ‖MTw‖∞ ≤ 2σ
√
n′ log p.

4. Restricted Strong Convexity (RSC): Given a set of indices Γ ⊂ [p], letC(Γ) = {θ ∈ Rp : ‖θΓc‖1 ≤ 3‖θΓ‖1}.
Here θΓ (respectively, θΓc) denotes θ restricted to entries in Γ (respectively, Γc = [p]\Γ). We
require that for all Γ of size |Γ| = s and for all θ ∈ C(Γ): ‖Mθ‖22 ≥ n′Ψ‖θ‖22.

Remark: Ifw is i.i.d. sub-gaussian with mean zero and variance σ2 and if the design matrixXn×p
is generated by sampling the rows i.i.d. from a Gaussian ensemble N (0,Σ), then under reasonable
assumptions on n, s, p and Σ, the tuple (X,w) is (s, σ,Ψ)-well-behaved with high probability.
(Roughly, a sufficient condition is that the eigenvalues of Σ lie strictly between 0 and 1 and that n
grows at least as fast as s log p.) See Negahban et al. (2010) for discussion and references.

The analysis of both our algorithms require the following assumption on the instance (X, y) of
the linear regression problem:

Assumption 2 (Sparse-Linear ) We can write y = Mθ∗ + w where

1. ‖θ∗‖∞ ≤ 1 and ‖θ∗‖0 ≤ s.
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2. All nonzero entries of θ∗ have absolute value at least Φ.

3. The response vector y ∈ [−s, s]n.

4. (X,w) is (s, σ,Ψ)-well behaved.

The analysis of our second, efficient algorithm requires a slightly stronger requirement on the
design matrix and noise. Specifically, our algorithm will partition the dataset into (roughly)

√
n

subsets of
√
n points. We require that the design matrices and noise vectors for each of these sub-

instances be well-behaved. Specifically:

Assumption 3 (Sparse-Linear’ ) In addition to Assumption 2 (Assumption Sparse-Linear),

3’. All pairs (X1, w1), ..., (X√n, w
√
n) are (s, σ,Ψ)-well-behaved, where (Xi, wi) are formed by

partitioning the rows of (X,w) into d
√
ne disjoint blocks of

√
n± 1 points.

Note that the assumptions on θ∗ are identical in Assumptions Sparse-Linear and Sparse-
Linear’ , and that the Assumption Sparse-Linear’ is strictly stronger than Sparse-Linear .

From the above assumptions one can easily conclude that |〈x, θ∗〉| ≤ s, where x is any row of
the design matrix X . This means, if we truncate the responses y1, · · · yn (in the dataset D) to have
values in [−s, s], then the utility of the algorithm will not worsen. Therefore, w.l.o.g. we assume
that y1, · · · , yn lie in [−s, s].

In order to compare the two support estimation algorithms, we compare the bounds on the
dataset size n such that there are consistent estimates for the empirical risk L̂(θpriv;D)− L̂(θ∗;D)
as n→∞. These bounds are shown in Table 2.

Section Algorithm Bound on n Running time poly(s, n, p)

Section 3.2 Exp-mech ω(s3 log p) no
Section 3.3 Algorithm Samp-Agg ω(s2 log2 p) yes

Table 2: Bound on the dataset size n for consistent estimate of empirical risk.

We chose sparse linear regression as a case study because of the following two reasons. First, it
demonstrates the use of our successive approximation tool which allows us to guarantee privacy for
constrained optimization. In our privacy analysis we assumed that the convex set F is bounded in
order to show that the minimizer of the regression problem does not change by much due to addition
or removal of one data entry. Second, sparse linear regression demonstrates the effectiveness of our
tighter utility analysis (Section 2.2.2). Using the tighter analysis, we obtained an

√
s improvement

in the utility guarantees.

3.2. Inefficient Feature Selection via Exponential Sampling

At a high level, the algorithm (Algorithm Exp-mech in Appendix F.1) finds a support Γ̂ of size
s such that restricted to this support, the minimum (non-private) loss is close the empirical loss
incurred by the true minimizer θ∗. In order to find Γ̂ privately, Algorithm Exp-mech uses the
exponential mechanism by McSherry and Talwar (2007). Broadly speaking, the exponential mech-
anism first defines a score (or quality) function q for all possible outputs of the algorithm in the
range space. (Algorithm Exp-mech defines the score function for any support Γ of size s as
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q(Γ;D) = minθ∈FΓ

∑n
i=1 `(θ; di) and the range space as all possible supports of size s.) It then

picks a support Γ of size s with probability proportional to exp (−εq(Γ;D)α), where α is an upper
bound on |`(θ; d)| for all d in domain T and for all θ ∈ F restricted to a support of size at most s. It
is important to realize that Algorithm Exp-mech may not be computationally efficient.

From the privacy analysis of exponential mechanism, it follows that Algorithm Exp-mech is ε-
differentially private. The main step in the utility analysis of Algorithm Exp-mech is that a “good”
support has high weight in the exponential sampling. Also the utility guarantee relies on the param-
eter α which essentially bounds the change in the score function for any support Γ when one entry
is added or removed from the dataset D. The following utility guarantee is proven in Appendix F.2.

Theorem 6 (Theorem 34, special case) Assume that |`(θ; d)| ≤ α (for all θ ∈ FΓ, for all d ∈ T
and for all support Γ of size at most s). We have E

[
L̂(φ;D)− L̂(θsp;D)

]
= O

(
αs log p
εn

)
. Here

φ = arg minθ∈FΓ̂
L̂(θ;D) and Γ̂ is the output of Algorithm Exp-mech .

For linear regression, if we instantiate the first step of Algorithm 2 (Algorithm Meta-Alg ) with the
exponential sampling described above, for outputting support Γ̂ while preserving ε/2-differential
privacy, and execute Algorithm Obj-Pert (Algorithm 1) in the second step with privacy parameters
(ε/2, δ), then we obtain an (ε, δ)-differentially private algorithm.

From Theorems 4 and 6, we directly obtain the utility guarantee for the current instantiation of
Meta Algorithm 2. See Appendix F.3 for a detailed proof.

Theorem 7 (Theorem 35, special case) Under Assumption 2 (Assumption Sparse-Linear ), if we
set ∆ = Θ (s/ε), then we have E

[
L̂(θpriv;D)− L̂(θ∗;D)

]
= O

(
1
nε

(
s log(1/δ)
nεΨ + s3 log p

))
.

Assuming ε, δ and Ψ to be constants, empirical risk goes to zero as n → ∞ as long as n =
ω(s3 log p).

3.3. Efficient Feature Selection via Sample and Aggregate Framework

The efficient version of the feature selection algorithm (Algorithm Samp-Agg (Algorithm 5)) uses
the Sample and Aggregate framework (SAF ) by Nissim et al. (2007). At a high-level, in stage one
SAF partitions the dataset into blocks D1, · · · ,Dk and executes some non-private algorithm B on
each Di. In the second stage, it uses a private aggregation function to combine the output of all the
k executions of the algorithm B.

In the context of current discussion, SAF works as follows. First, the dataset D is partitioned
into k blocks D1, · · · ,Dk. Then a feature selection algorithm Asupp is run on each data block Di.
Each execution of AlgorithmAsupp is guaranteed to produce a vector Vi in {0, 1}p (where ones in the
vector represent the elements in the support). In the second part, given V1, · · · , Vk, the aggregation
function of SAF picks the top-s coordinates in terms of the average number of votes they received
from V1, · · · , Vk. Since, this choice of top s coordinates cannot be private, controlled amount of
noise is added to the average number of votes for each coordinate before selecting the top s (call
this set Γ̂).

The resulting algorithm (Samp-Agg ) is ε-differentially private (see Appendix G.2).

Theorem 8 Assume that all k executions of Asupp identify an underlying correct support Γ̂∗ for
each data block Di. With probability ≥ 1− p exp(− εk

4s), the output set Γ̂ equals Γ̂∗.
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A proof of can be found in Appendix G.3. In the context of sparse linear regression, Algorithm
Samp-Agg yields Algorithm 3 as an instantiation of Algorithm Meta-Alg (Algorithm 2). See Ap-
pendix G.4 for the detailed algorithm.

Algorithm 3 Sparse linear regression via Sample and Aggregate framework

1: Let θ̂ ∈ arg min
θ∈Rp

1
2n‖y−Xθ‖

2
2+ Λ

n‖θ‖1. Define AlgorithmAsupp as the algorithm which returns

the top s coordinates of θ̂ (based on absolute value).
2: Run Algorithm Samp-Agg with privacy parameter ε/2 and number of data blocks k =

√
n to

return support Γ̂.
3: Normalize the design matrixXn×p such that a vector of any s elements from each row has norm

at most
√
s and make sure the response vector y is in [−s, s]n.

4: Set F = {θ ∈ Rp : ‖θ‖∞ ≤ 1}. Using Algorithm Obj-Pert (Algorithm 1), minimize the loss
function L̂(θ;D) over the convex set FΓ̂ with privacy parameters (ε/2, δ).

The above instantiation of Algorithm Meta-Alg is (ε, δ)-differentially private (see Theorem 38
in Appendix G.4). The proof of this follows directly from the privacy guarantees of Algorithms
Obj-Pert and Samp-Agg . For utility, we get the following:

Theorem 9 (Theorem 44, special case) Let Λ = Θ
(
σn1/4

√
log p

)
and ∆ = Θ (s/ε). Under

Assumption 3 (Assumption Sparse-Linear’ ), if n ≥ (16σ
ΨΦ )4s2 log2 p, then with probability ≥

1−
(
p exp

(
− ε
√
n

8s

))
over the randomization of the support selection step,

Eb
[
L̂(θpriv;D)− L̂(θ∗;D)

]
= O

(
s2

nε

(
s2 log(1/δ)

nεΨ
+ 1

))
Here b is the noise vector in Algorithm Obj-Pert (Algorithm 1).

It is interesting to note that the convergence rate does not have any dependence on the dimen-
sionality p. From the failure probability it can be seen that one needs n = ω(s2 log2 p) to obtain
failure probability that goes down to zero as n → ∞. Hence, it suffices to have n = ω(s2 log2 p)
for consistent empirical risk.
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Appendix A. Notation

Let D = 〈d1, · · · , dn〉 be a dataset drawn from a domain of tuples T . Let P be a distribution over
the domain T . Let L̂ be an empirical loss defined as L̂(θ;D) = 1

n

∑n
i=1 `(θ; di), where `(θ; di) is a

positive real valued function which is convex in the first parameter θ ∈ Rp. We define the stochastic
loss for a parameter vector θ over the distribution P as follows: L̄(θ;P) = Ed∼P [`(θ; d)]. Let
r : Rp → R+ be a convex regularizer. We define the empirical objective function as Ĵ(θ;D) =
L̂(θ;D) + 1

nr(θ). Similarly, we define the stochastic objective function as J̄(θ;P) = L̄(θ;P) +
1
nr(θ). To obtain differential privacy, we add a “noisy” term bT θ

n (where b is a noise vector drawn
from some appropriate distribution) and an L2 penalty ∆

2n‖θ‖
2
2 to the objective function Ĵ(θ;D)

(see Algorithm 1).
We denote such an objective function as Jpriv(θ, b;D) = Ĵ(θ;D) + ∆

2n‖θ‖
2
2 + 1

nb
T θ. Since the

term ∆
2n‖θ‖

2
2 becomes useful in our utility analysis too, we define J#(θ;D) = Ĵ(θ;D) + ∆

2n‖θ‖
2
2

to segregate the noise term. See Table 3 for a summary.

Description Objective Function Minimizer
Sparse minimizer for θ ∈ F and ‖θ‖0 ≤ s L̂(θ;D) θsp

Empirical loss + regularizer 1
nr Ĵ(θ;D) θ̂

Expected empirical loss + regularizer 1
nr J̄(θ;P) θ̄

Private objective function (Ĵ(θ;D) + ∆
2n‖θ‖

2
2 + bT θ

n ) Jpriv(θ, b;D) θpriv

Ĵ(θ;D) + ∆
2n‖θ‖

2
2 J#(θ;D) θ#

Table 3: Various objective functions and their corresponding minimizers over F
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Appendix B. Differential Privacy via Successive Approximation

Theorem 1 directly follows from the following lemma. In the following, we use the notation φD
and φiD in place of φ(D, ·) and φi(D, ·), respectively.

Lemma 10 Let D and D′ be two datasets. Let b be a random variable. Let φ1
D, φ

2
D, . . . be a

sequence of functions that converge pointwise to some function φD (i.e., lim
i→∞

φiD(b) = φD(b) for

all values of b). Similarly, let φ1
D′ , φ2

D′ , . . . be a sequence of functions that converge pointwise
to some function φD′ . Let µiD be the probability measure defined as µiD(E) ≡ Pr[φiD(b) ∈ E]
and define µiD′ , µD, and µD′ similarly. Fix ε, δ ≥ 0. If µiD(E) ≤ eεµiD′(E) + δ for all i, then
µD(E) ≤ eεµD′(E) + δ.

Lemma 10 follows immediately from Claims 11, 12, and 13.

Claim 11 Consider the σ-algebra of Borel subsets of Rp. For any Borel set E, probability measure
µ, and ξ > 0, there exists an open set A and a closed set B such that: B ⊆ E ⊆ A and

• µ(E) ≤ µ(A) ≤ µ(E) + ξ

• µ(B) ≤ µ(E) ≤ µ(B) + ξ

Proof We first prove the first condition relating E and A for the cases when E is closed and then
when E is a Borel set (the case when E is open is trivial). Then we prove the condition relating E
and B by reducing it to previous results.

Part 1: Closed sets E.
SupposeE is a closed subset of Rp. For each i = 1, 2, . . . , defineA(i) = {y : inf

x∈E
‖x−y‖2 < 1/i}.

Each A(i) is open since it is the union of open balls of radius 1/i around each point of E. Clearly,

E ⊆ A(i) and for all i and A(1) ⊇ A(2) ⊇ . . . . Also E =
∞⋂
i=1

A(i) because if a point x /∈ E then,

since E is closed, the distance between x and E is non-zero and so one of the A(i) does not contain
x. The downward continuity property (Billingsley, 1995) of probability measures now ensures that
lim
i→∞

µ(A(i)) = µ(E). Thus given ξ > 0, there exists an i such that µ(A(i)) ≤ µ(E) + ξ and

µ(A(i)) ≥ µ(E) because E ⊆ A(i).

Part 2: Borel sets E. Consider the algebra G consisting of all subsets of Rp that are (1) open, or (2)
closed, or (3) the intersection of an open and a closed set, or (4) the union of an open and closed set.
Note that Rp ∈ G and that G is closed under complementation, finite union, and finite intersection.
Given the values of µ(C) for all C ∈ G, we can define the outer measure (Billingsley, 1995) µ∗ on
all subsets F ⊆ Rp as follows:

µ∗(F ) = inf
{C1,C2,... }⊆G

F⊆
⋃
Ci

∑
i

µ(Ci)

where the infimum is taken over all finite and countable collections of sets from G whose union
contains F . Caratheodory’s Extension Theorem (Billingsley, 1995) guarantees that µ(E) = µ∗(E)
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for all Borel sets E. Thus for any ξ > 0, there exists a finite or countable collection C1, C2, . . . of
sets in G such that E ⊆

⋃
i
Ci and µ(E) ≤

∑
i
µ(Ci) ≤ µ(E) + ξ/2.

We now replace theCi with slightly bigger open setsAi. IfCi is open, then setAi = Ci. IfCi is
closed, then use the previous result to find an open set Ai ⊃ Ci such that µ(Ai) ≤ µ(Ci) + ξ/2i+1.
If Ci is the intersection of an open set O and a closed set H , then replace H with an open set
H ′ ⊃ H such that µ(H ′) ≤ µ(H) + ξ/2i+1 and set Ai = O ∩ H ′. Note that Ci ⊂ Ai and
µ(Ai) ≤ µ(Ci ∪ (H ′ \H)) ≤ µ(Ci) + ξ/2i+1. Finally, if Ci is the union of an open set O and a
close set H , then replace H with an open set H ′ ⊃ H such that µ(H ′) ≤ µ(H) + ξ/2i+1 and set
Ai = O ∪H ′. Note that Ci ⊂ Ai and µ(Ai) ≤ µ(Ci ∪ (H ′ \H)) ≤ µ(Ci) + ξ/2i+1.

Set A =
⋃
i
Ai. Note that A is open. Then, since E ⊆ A,

µ(E) ≤ µ(A) ≤
∑
i

µ(Ai) ≤
∑
i

(µ(Ci) + ξ2−i−1)

≤ ξ/2 +
∑
i

µ(Ci) ≤ ξ/2 + µ(E) + ξ/2

= µ(E) + ξ

Part 3: Approximating E from below.
To prove the second part of the theorem, pick an ξ > 0 and choose an open set A ⊇ Ec (the
complement of E) such that µ(Ec) ≤ µ(A) ≤ µ(Ec) + ξ. Set B = Ac. Then B is closed, B ⊆ E,
and

µ(Ec) ≤ µ(Bc) ≤ µ(Ec) + ξ

⇒ 1− µ(E) ≤ 1− µ(B) ≤ 1− µ(E) + ξ

⇒ µ(B) ≤ µ(E) ≤ µ(B) + ξ

The next result shows that pointwise convergence of the φiD allows us to upper bound Pr[φD(b) ∈
O] when O is open and lower bound it when O is closed.

Claim 12 Under the assumptions of Lemma 10, for every open set A ⊆ Rp,

µD(A) ≤ lim
i→∞

inf µiD(A) .

For every closed set B ⊆ Rp,
µD(B) ≥ lim

i→∞
supµiD(B)

Proof For any set C, we use the notation 1{φD(b)∈C}(b) to be the indicator function that is 1 when
φD(b) ∈ C and 0 otherwise, and similarly for 1{φiD(b)∈C}(b). Let A be any open set. For any b such
that φD(b) ∈ A, there is a bounded open set O so that φD(b) ∈ O ⊆ A. Since φiD(b) converges
to φD(b), this means that eventually φiD(b) ∈ O and so φiD(b) ∈ A. This means that for any b
such that φD(b) ∈ A, the indicators 1{φiD(b)∈A}(b) converge to 1{φD(b)∈A} as i → ∞. For b such
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that φD(b) /∈ A, 1{φiD(b)∈A}(b) ≥ 0 = 1{φD(b)∈A}(b). Thus for all b, lim
i→∞

inf 1{φiD(b)∈A}(b) ≥
1{φD(b)∈A}(b). By Fatou’s Lemma (Billingsley, 1995),

µD(A) =

∫
1{φD(b)∈A}(b) dµ(b)

≤
∫

lim
i→∞

inf 1{φiD(b)∈A}(b) dµ(b)

≤ lim
i→∞

inf

∫
1{φiD(b)∈A}(b) dµ(b)

= lim
i→∞

inf µiD(A)

To show the second part, let B be a closed set. Consider its complement Bc, which is an open
set. Using the previous result,

µD(Bc) ≤ lim
i→∞

inf µiD(Bc)

⇒ 1− µD(B) ≤ lim
i→∞

inf(1− µiD(B))

⇒ µD(B) ≥ − lim
i→∞

inf −µiD(B)

⇒ µD(B) ≥ lim
i→∞

supµiD(B)

The final result states that the upper bound and lower bound results of Claim 12 are all that we
need.

Claim 13 Let E be a Borel set and let µD, µD′ , µiD, and µiD′ (for all i) be probability measures
such that:

1. µD(A) ≤ limi→∞ inf µiD(A) for all open sets A ⊆ Rp and µD(B) ≥ limi→∞ supµiD(B)
for all closed sets B ⊆ Rp.

2. µD′(A) ≤ limi→∞ inf µiD′(A) for all open sets A ⊆ Rp and µD′(B) ≥ limi→∞ supµiD′(B)
for all closed sets B ⊆ Rp.

For all ε, δ ≥ 0, if µiD(E) ≤ eεµiD′(E) + δ for all i, then µD(E) ≤ eεµD′(E) + δ.

Proof

Part 1: Reduction to open sets.
Let E be a Borel set and let D and D′ be two datasets that differ by the addition or deletion of one
tuple. Assume, by way of contradiction, that the (ε, δ)-differential privacy conditions do not hold
so that µD(E) ≥ eεµD′(E) + δ + α for some α > 0. Using Claim 11, choose an open set O ⊇ E
such that:

µD′(E) ≤ µD′(O) ≤ µD′(E) +
α

2eε
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Therefore

µD(O) ≥ µD(E) ≥ eεµD′(E) + δ + α

≥ eε
(
µD′(O)− α

2eε

)
+ δ + α

= eεµD′(O) + δ + α/2

and so O also violates the (ε, δ)-differential privacy constraints. Therefore, without loss of general-
ity, we can assume that E is actually an open set.

Part 2: Proof for open sets. Let E be an open set that violates the (ε, δ)-differential privacy
conditions such that µD(E) ≥ eεµD′(E) + δ + α for some α > 0. We will approximate E from
below using both open sets and closed sets as follows. First, note that E 6= ∅ because the set ∅
can never violate the differential privacy conditions. Consider the open sets Ai and closed set Bi
defined as follows:

Ai = {θ′ : inf
θ∈Ec

‖θ − θ′‖2 < 1/i}

Bi = {θ′ : inf
θ∈Ec

‖θ − θ′‖2 ≤ 1/i}

Note that Bi = Ai (Bi is the closure of Ai) and Ec is a subset of Ai and Bi for all i ≥ 1. Now
define the open set Oi ≡ Bc

i and note that Oi = Aci and that Oi and Oi are subsets of E. Finally,
note that O1 ⊆ O2 ⊆ . . . and O1 ⊆ O2 ⊆ . . . and

∞⋃
i=1

Oi = E =
∞⋃
i=1

Oi

Now, by the upward continuity property of probability measures (Billingsley, 1995), there exists
an i0 such that for all i ≥ io

µD(Oi) ≤ µD(E) ≤ µD(Oi) +
α

3
µD′(Oi) ≤ µD′(E)

Thus

µD(E) ≥ eεµD′(E) + δ + α

⇒ µD(Oi) +
α

3
≥ eεµD′(Oi) + δ + α

⇒ µD(Oi) ≥ eεµD′(Oi) + δ +
2α

3

Then, using the lim inf conditions on open sets and lim sup conditions on closed sets,

lim
j→∞

inf µjD(Oi) ≥ µD(Oi)

≥ eεµD′(Oi) + δ +
2α

3

≥ lim
j→∞

sup eεµjD′(Oi) + δ +
2α

3
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Now, since µjD(Oi) ≤ µjD(Oi):

lim
j→∞

inf µjD(Oi) ≥ lim
j→∞

sup eεµjD′(Oi) + δ +
2α

3

and so for some j

µjD(Oi) ≥ eεµjD′(Oi) + δ +
α

3

However, this contradicts the fact that the pair of measures µjD, µjD′ satisfy the (ε, δ)-differential
privacy conditions (µjD(Oi) ≤ eεµjD′(Oi) + δ). Therefore E cannot violate the (ε, δ)-differential
privacy conditions for the measures µD and µD′ .

Appendix C. Appendix: Differential Privacy and Convex Optimization

In order to prove Theorem 2, the starting point is Lemma 14 (Section C.1) which proves differential
privacy for the special cases of Algorithm 1 where the regularizer r is twice continuously differen-
tiable and the convex set F over which we optimize is the entire real space Rp. Afterwards, we will
use our successive approximation technique to remove these assumptions one-by-one (Sections C.2
and C.3).

C.1. Private Smooth Unconstrained Optimization

Lemma 14 (Differentially Private Smooth Unconstrained Objective Perturbation) Under the con-
ditions of Theorem 2, if we assume that the convex regularizer r is twice-continuously differentiable,
the convex set F is the entire real space Rp, then

1. (Chaudhuri et al., 2011)with Gamma density ν1 in Algorithm 1 (Algorithm Obj-Pert ) guar-
antees ε-differential privacy.

2. (This paper) with Gaussian density ν2 in Algorithm 1 (Algorithm Obj-Pert ) guarantees (ε, δ)-
differential privacy.

Proof The first part of Lemma 14 follows directly from Chaudhuri et al. (2011) and hence omitted
here. The proof of the second part of Lemma 14 is as follows.

If we want to prove that Algorithm 1 satisfies (ε, δ)-privacy, it suffices to show that for all
α ∈ Rp the following is true.

e−ε(pdf(θpriv = α;D′)− δ) ≤ pdf(θpriv = α;D) ≤ eεpdf(θpriv = α;D′) + δ (2)

First consider an α ∈ Rp. If we have θpriv = α, then it means that α = arg minθ∈Rp nL̂(θ;D)+
r(θ) + ∆

2 ‖θ‖
2
2 + bT θ. Setting the gradient of the objective function to zero we get the following.

b(α;D) = −
(
n5 L̂(α;D) +5r(α) + ∆α

)
(3)
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We have pdfD(θpriv=α)
pdfD′ (θpriv=α)

= ν2(b(α;D);ε,δ,ζ)
ν2(b(α;D′);ε,δ,ζ)

|det(5b(α;D′))|
| det(5b(α;D))| . We bound the ratios of the densities ν2 and

the determinants separately.
First, we show that for all α ∈ Rp, e−ε ≤ | det(5b(α;D′))|

|det(5b(α;D))| ≤ eε. The following lemma would be
helpful in bounding the ratio.

Lemma 15 (Chaudhuri et al. (2011)) If A is a full-rank matrix and if E is matrix with rank at
most 2, then,

det(A+ E)− det(A)

det(A)
= λ1(A−1E) + λ2(A−1E) + λ1(A−1E)λ2(A−1E)

where λi(Z) is the i-th highest eigenvalue of matrix Z.

Let A = 5b(α;D) = −(n52 L̂(α;D) +52r(α) + ∆Ip), where Ip is an identity matrix of p× p
dimensions. W.l.o.g. assume thatD′ has one entry more as compared toD, andD has n entries. Let
E = 52`(α; dn+1). Therefore, |det(5b(α;D′))| = det(A+ E). Since n52 L̂(α;D) +52r(α)
is positive semi-definite (as both L̂ and r are convex), the smallest eigenvalue of A is ∆. Since E
is a positive semi-definite matrix of rank at most one, A−1E has at most one non-zero eigenvalue.
Additionally, it follows that λ1(A−1E) ≤ λ1(E)

∆ . Applying Lemma 15, we have det(A+E)
det(A) ≤ 1+ ψ

∆ ,

since λ1(E) ≤ ψ by assumption. Replacing the value of ∆ we get | det(5b(α;D′))|
| det(5b(α;D))| ≤ e

ε
2 .

To bound ν2(b(α;D);ε,δ,ζ)
ν2(b(α;D′);ε,δ,ζ) , recall that the noise vector b is drawn from the Gaussian distribution

N (0, β2Ip), where β =
ζ
√

8 log 2
δ

+4ε

ε is the standard deviation. Let us assume Γ = b(α;D) −
b(α;D′). With this we have the following:

ν2(b(α;D); ε, δ, ζ)

ν2(b(α;D′); ε, δ, ζ)
=
e
− ‖b(α;D)‖2

2
2β2

e
−

‖b(α;D′)‖2
2

2β2

= e
1

2β2 |‖b(α;D)‖22−‖b(α;D′)‖22|

= e
1

2β2 |‖b(α;D)‖22−‖b(α;D)−Γ‖22|

= e
1

2β2 |2〈b(α;D),Γ〉−‖Γ‖22|

Since ‖ 5 `(θ; ).‖2 ≤ ζ for all θ ∈ Rp and for all d ∈ T , therefore ‖Γ‖2 ≤ ζ. Hence the following
is true.

e
1

2β2 |2〈b(α;D),Γ〉−‖Γ‖22| ≤ e
1

2β2 (|2〈b(α;D),Γ〉|+‖Γ‖22) ≤ e
1

2β2 (|2〈b(α;D),Γ〉|+ζ2) (4)

The following two lemmas will be useful in bounding |〈b(α;D),Γ〉|. Both of them follow from
basic probability theory and hence we skip their proofs.

Lemma 16 Let Z ∼ N (0, Ip) and v ∈ Rp be a fixed vector. Then

〈Z, v〉 ∼ N (0, ‖v‖22)
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Note that Γ is independent of the noise vector. Therefore using Lemma 16, we get 〈b(α;D),Γ〉 ∼
N (, ‖Γ‖22β2). The following lemma provides a tail bound for normal distribution which we use to
bound the probability that the noise vector b(α;D) is not in the set GOOD .

Lemma 17 Let Z ∼ N (0, 1), then for all t > 1, we have

Pr[|Z| > t] ≤ e−t2/2

Using this lemma and the fact that ‖Γ‖2 ≤ ζ, we get Pr[|〈b(α;D),Γ〉| ≥ ζβt] ≤ e−
t2

2 , where
t > 1. Let GOOD be the set {a ∈ Rp|〈a,Γ〉| ≥ ζβt}. We want the noise vector b(α;D) to be in

the set GOOD w.p. at least 1 − δ. Setting t =
√

2 log 2
δ implies that 2e−

t2

2 = δ. To make sure

t ≥ 1, we need to have δ ≤ 2√
e
. This always true for any non trivial δ. Replacing t =

√
2 log 2

δ

in ζβt, we get from Equation 4 that ν2(b(α;D);ε,δ,ζ)
ν2(b(α;D′);ε,δ,ζ) ≤ e

1
2β2

(
βζ
√

8 log 2
δ

+ζ2
)

. Solving for β we get

β ≥
ζ
√

8 log 2
δ

+4ε

ε . To complete the argument, we show the following:

pdf(θpriv = α;D) = Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D)

+ Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D)

≤ Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D) + δ

≤ eε Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D′) + δ

≤ eεpdf(θpriv = α;D′) + δ

where b is the noise vector in Algorithm 1. This concludes the proof of Lemma 14.

C.2. Extension to non-differentiable regularizers via Successive Approximation

Our first goal is to remove the differentiability assumptions on the regularizer r. To do this, we use
the bump function (Zemanian, 1987) Ψ(x) : R → R and a sequence of kernel functions Ki(θ) :
Rp → R (for i = 1, 2, . . . ) defined as:

Ψ(x) =

{
exp(− 1

1−x2 ) if |x| < 1

0 if |x| ≥ 1

Ki(θ) =
Ψ(i‖θ‖22)∫

θ′∈Rp
Ψ(i‖θ′‖22) dθ′

(5)

The bump function Ψ is infinitely differentiable and all of its derivatives vanish outside the
interval (−1, 1) (Zemanian, 1987). Therefore the kernels Ki are also infinitely differentiable and
their support (and that of their derivatives) is

{
θ : ‖θ‖22 < 1/i

}
. Now, if r is a convex regularizer
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(but not necessarily differentiable), then consider the regularizer ri defined as the convolution of r
and Ki:

ri(θ) = [r ∗Ki](θ) ≡
∫

y∈Rp

r(θ − y)Ki(y)dy

By the elementary properties of convolution and the smoothness ofKi, the regularizer ri is infinitely
differentiable. Since convolution with Ki is the same as an (infinite) positive linear combination of
translations of r, the regularizer ri is also convex. Thus we will approximate the objective function
Jpriv(θ, b;D) = L̂(θ;D) + ∆

2n‖θ‖
2
2 + 1

n(bT θ + r(θ)) with Jprivi(θ, b;D) = L̂(θ;D) + ∆
2n‖θ‖

2
2 +

1
n(bT θ+ ri(θ)), which has a smooth regularizer and to which Lemma 14 can be applied. In the next
lemma we show that the minimizers of Jpriv and Jprivi converge pointwise. This will enable us to
invoke the successive approximations proof technique for guaranteeing privacy via Lemma 10.

Lemma 18 (Unconstrained Pointwise Convergence) Let L̂ be a convex function and r a convex
regularizer. Define the kernel function Ki as in Equation 5 and let ri(θ) = [r ∗ Ki](θ) be the
convolution between r and Ki. Define the objective function Jpriv(θ, b;D) = L̂(θ;D) + ∆

2n‖θ‖
2
2 +

1
n(bT θ+r(θ)) and Jprivi(θ, b;D) = L̂(θ;D)+ ∆

2n‖θ‖
2
2 + 1

n(bT θ+ri(θ)). Define the unconstrained
minimizers, for each b, as φD(b) = argmin

θ∈Rp
Jpriv(θ, b;D) and φiD(b) = argminθ∈Rp J

privi(θ, b;D).

Then for every b ∈ Rp, lim
i→∞

φiD(b) = φD(b).

Proof In order to prove the pointwise convergence of the sequence of functions φiD to φD, we first
prove the following claim.

Claim 19 Let I ⊆ Rp be a bounded set and letB ⊆ Rp be any set. The functions n ·Jprivi converge
uniformly to n · Jpriv on I ×B as i→∞.

Proof Choose a ξ > 0. Let I ′ = {y : inf
x∈I
||y − x||2 ≤ 1} be the set of all points whose distance

to I is at most 1. Note that I ′ is closed, bounded, and hence compact. Since r(θ) is a continuous
function defined over the compact set I ′, it is then also uniformly continuous on I ′. This means
that there exists an η (depending only on ξ) such that |r(θ1)− r(θ2)| ≤ ξ whenever θ1, θ2 ∈ I ′ and
||θ1 − θ2||2 ≤ η. Now, for any i > 1/ξ and any θ ∈ I and b ∈ B,

n|Jprivi(θ, b;D)− Jpriv(θ, b;D)| = |ri(θ)− r(θ)|

=

∣∣∣∣∫ r(θ − y)Ki(y) dy − r(θ)
∣∣∣∣

=

∣∣∣∣∫ [r(θ − y)− r(θ)]Ki(y) dy

∣∣∣∣ (Since the integral of Ki is 1)

≤
∫ ∣∣∣∣r(θ − y)− r(θ)

∣∣∣∣Ki(y) dy
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=

∫
{y : ||y||22≤1/i}

∣∣∣∣r(θ − y)− r(θ)
∣∣∣∣Ki(y) dy (The support of Ki)

≤
∫
{y : ||y||22≤1/i}

ξKi(y) dy (Since θ ∈ I, θ − y ∈ I ′, and ||y||2 ≤ 1/i ≤ ξ)

= ξ (Integral of Ki over its support is 1)

Thus n · Jprivi converge uniformly to n · Jpriv on I ×B.

Now with the uniform conververgence of the objective function in hand we use the following steps
to complete the proof for Lemma 18.
Step 1: Properties of Jpriv

In order to prove pointwise convergence, we first establish some simple properties of Jpriv(θ, b;D),
which is ∆

n -strongly convex in θ for each fixed b. Recall that for each b, φD(b) returns the unique θ
that minimizes Jpriv(θ, b;D) over Rp (uniqueness is guaranteed by strong convexity). By definition
of ∆-strong convexity,

Jpriv(tθ1 + (1− t)θ2, b;D) ≤ tJpriv(θ1, b;D) + (1− t)Jpriv(θ2, b;D)− ∆

2n
t(1− t)‖θ1 − θ2‖22

So for all θ and t ∈ (0, 1), recalling that φD(b) is the minimizer of Jpriv(·, b;D) over Rp,

Jpriv(φD(b), b;D) ≤ Jpriv(tφD(b) + (1− t)θ, b;D)

≤ tJpriv(φD(b), b;D) + (1− t)Jpriv(θ, b;D)− ∆

2n
t(1− t)‖φD(b)− θ‖22

(1− t)Jpriv(φD(b), b;D) ≤ (1− t)Jpriv(θ, b;D)− ∆

2n
t(1− t)‖φD(b)− θ‖22

∆

2n
t‖φD(b)− θ‖22 ≤ Jpriv(θ, b;D)− Jpriv(φD(b), b;D)

∆

2n
‖φD(b)− θ‖22 ≤ Jpriv(θ, b;D)− Jpriv(φD(b), b;D) (6)

Where the last inequality follows by taking limits as t→ 1.

Step 2: Choosing Parameters
Choose any b. Now choose a small ξ such that ∆/2 > ξ > 0. Define I = {θ : ‖θ− φD(b)‖2 ≤ 1}
and the corresponding set B = {b′ : φD(b′) ∈ I}. Since I is bounded, we can use the uniform
convergence of the n ·Jprivi to n ·Jpriv over I×B (from Claim 19). Choose an iξ depending only on
ξ such that for all i ≥ iξ, θ ∈ I, and b′ ∈ B the inequality n|Jpriv(θ, b′;D) − Jprivi(θ, b′;D)| ≤ ξ

3
holds.

Step 3: Pointwise Convergence
We now show that ‖φiD(b) − φD(b)‖2 ≤

√
4ξ/∆ for all i ≥ iξ. Assume, by way of contradiction,

that ‖φiD(b) − φD(b)‖2 >
√

4ξ/∆ for some i ≥ iξ and b ∈ B. Then, by the strong convexity of
Jprivi (in terms of the parameter θ), there is a θ′ along the line from φiD(b) to φD(b) such that

Jprivi(φiD(b), b;D) < Jprivi(θ′, b;D) < Jprivi(φD(b), b;D) (7)

and ‖θ′ − φD(b)‖2 =
√

2ξ/∆ < 1 (since we chose ξ < ∆/2) (8)
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Since θ′ ∈ Rp, so by Equation 8, θ′ ∈ I. Now, by Equation 6,

ξ =
∆

2
‖φD(b)− θ′‖22 ≤ n|Jpriv

D(θ′, b)− Jpriv
D(φD(b), b)|

≤ n · Jprivi
D(θ′, b) +

ξ

3
− n · Jprivi

D(φD(b), b) +
ξ

3
(By uniform convergence on I ×B)

⇒ n · Jprivi(θ′, b;D) ≥ n · Jprivi(φD(b), b;D) +
ξ

3

This contradicts the fact that θ′ was chosen to satisfy Jprivi(θ′, b;D) < Jprivi(φD(b), b;D). Thus
‖φiD(b)− φD(b)‖2 ≤

√
4ξ/∆ for all i ≥ iξ and therefore φiD(b)→ φD(b) as i→∞.

Now invoking Lemmas 10 and 14 we directly get the following.

Lemma 20 (Differentially Private Unconstrained Objective Perturbation) Under the conditions
of Theorem 2, if we assume that the convex set F is the entire real space Rp, then

• using Gamma density ν1, Algorithm 1 (Algorithm Obj-Pert ) guarantees ε-differential pri-
vacy.

• using Gaussian density ν2, Algorithm 1 (Algorithm Obj-Pert ) guarantees (ε, δ)-differential
privacy.

C.3. Extension to Hard Convex Constraints via Successive Approximation.

In order to extend Lemma 20 to Theorem 2, we need to show the same (as in Lemma 20) when F
is a closed convex subset of Rp. To show this we will again invoke our successive approximations
technique.

Consider the function f(θ) = miny∈F ‖θ− y‖2. This function is zero if θ ∈ F and is increasing
as θ goes farther away from F. Also notice that f is a convex function. Now, consider the following
unconstrained optimization problem.

φiD(b) = arg min
θ∈Rp

Jprivi(θ, b;D) = L̂(θ;D) +
∆

2n
‖θ‖22 +

1

n
(r(θ) + bT θ + if(θ)) (9)

Correspondingly consider the following optimization problem whose privacy we care about.

φD(b) = arg min
θ∈F

Jpriv(θ, b;D) = L̂(θ;D) +
∆

2n
‖θ‖22 +

1

n
(r(θ) + bT θ) (10)

Similar to Lemma 18, the following Lemma shows the pointwise convergence of φiD and φD.

Lemma 21 (Constrained Pointwise Convergence) Let L̂ be a convex function and r a convex reg-
ularizer. For a given closed convex set F ⊂ Rp, define the function f(θ) = miny∈F ‖θ−y‖2. Define
the objective function Jpriv(θ, b;D) and Jprivi(θ, b;D) as in Equations 9 and 10. Define the min-
imizers, for each b, as φD(b) = argmin

θ∈F
Jpriv(θ, b;D) and φiD(b) = argminθ∈Rp J

privi(θ, b;D).

Then for every b ∈ Rp, lim
i→∞

φiD(b) = φD(b).
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Proof Before we prove Lemma 21, we will state some simple properties about strongly convex
functions. These properties will be needed in the argument of the proof of Lemma 21.

Claim 22 Let g be a ∆-strongly convex function and let θ̂ be the minimizer of g over a convex set
M . Then g(θ)− g(θ̂) ≥ ∆

2 ‖θ − θ̂‖2 for all θ ∈M .

Claim 23 Let g be a convex function and let θ1, θ2 ∈ Rp and let s ≥ 1. Then

g(θ1 + sθ2)− g(θ1)

‖sθ2‖2
≥ g(θ1 + θ2)− g(θ1)

‖θ2‖2

With these two claims in hand we complete the proof of Lemma 21.
In the following set of arguments we will show that for any b ∈ Rp, there exists an i0 s.t.

∀i > i0, φiD(b) = φD(b). This will then directly imply that φi converges pointwise to φD. Con-
sider any b ∈ Rp. First note that φ0

D(b) is the unconstrained minimizer. By strong convexity, the
unconstrained minimizer φ0

D(b) exists and the constrained minimizer φD(b) also exists since F is
closed and convex. If φ0

D(b) = φD(b), then we are done. If φ0
D(b) ∈ F, then φ0

D(b) = φD(b) by
strong convexity (since φD(b) is a minimizer over F) and we are also done. Thus, we may assume
φ0
D(b) 6= φD(b) and φ0

D(b) /∈ F.
For any θ, let θF be the point in F that is closest to θ (existence is guaranteed because F is closed

and uniqueness is guaranteed because F is convex) so that ‖θ − θF‖2 = f(θ).
Now consider the set of pointsH ≡ {θ : J(θ, b;D) ≤ Jpriv(φD(b), b;D)}. Clearly φiD(b) ∈ H

for all i. Let d =
√
n · Jpriv(φD(b), b;D)− n · Jpriv(φ0

D(b), b;D). By Claim 22, H lies in the

closed ball B with center φ0
D(b) and radius d. Since φD(b) ∈ H ⊆ B, the farthest distance from

any point θ ∈ B to F is ‖θ − θF ‖2 ≤ ‖θ − φD(b)‖2 ≤ 2d.
Consider the function κ : B×{v ∈ Rp : ‖v‖2 = 2d} defined as κ(θ, v) = n·Jpriv(θ+v,b;D)−n·Jpriv(θ,b;D)

‖v‖2 .
Let m be the supremum of κ (it is finite since κ is a continuous function over a compact set).
Then for any θ ∈ H , using Claim 23 (with θ1 ≡ θ, θ2 ≡ θF − θ, and s ≡ 2d

‖θF−θ‖2 ), we have
n·Jpriv(θF,b;D)−f(θ)

‖θF−θ‖2 ≤ m.
Now set α = 2m. Then for any θ ∈ H ⊆ B with θ /∈ F,

n · Jpriv(θ, b;D) + if(θ) = n · Jpriv(θF, b;D) + if(θ)− n · Jpriv(θF, b;D)− n · Jpriv(θ, b;D)

‖θF − θ‖2
‖θF − θ‖2

≥ n · Jpriv(θF, b;D) + if(θ)−m‖θF − θ‖2
= n · Jpriv(θF, b;D) + 2mf(θ)−mf(θ)

≥ n · Jpriv(φD(b), b;D) +mf(θ)

> n · Jpriv(φD(b), b;D) (since θ /∈ F and F is closed)

Since φiD(b) ∈ H , this means φiD(b) = φD(b), contradicting the assumption that φiD(b) /∈ F.
This completes the proof of Lemma 21.

Using the results of Lemmas 20 and 21, and invoking Lemma 10, we complete the proof of
Private Convex Optimization theorem, i.e., Theorem 2.
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Appendix D. Estimating Empirical Risk and Generalization Error

D.1. Estimating Empirical Risk

To bound the empirical risk mentioned in Section 2.2.1, we need the following helper lemma.

Lemma 24 Let D = {d1, . . . , dn} be a dataset, and let Ĵ(θ;D) = 1
n

n∑
i=1

`(θ; di) + r(θ)
n . Let

θ# = arg minθ∈F Ĵ(θ;D) + ∆
2n‖θ‖

2
2 and let θpriv be the output of Algorithm 1 (Algorithm Obj-

Pert ), where F ⊆ Rp is a closed convex set. Then

‖θ# − θpriv‖2 ≤
2‖b‖2

∆

where b is the noise vector in Algorithm 1.

Proof We have θpriv = arg minθ∈F J
#(θ;D) +

bT θ

n︸ ︷︷ ︸
Jpriv(θ;D)

, where J#(θ;D) = Ĵ(θ;D) + ∆
2n‖θ‖

2
2. Sim-

ilarly, θ# = arg minθ∈F J
#(θ;D).

Since θpriv is the minimizer of Jpriv(θ;D) and Jpriv is ∆
n strongly convex in θ, we have the

following (from Claim 22):

Jpriv(θ#;D) ≥ Jpriv(θpriv;D) +
∆

2n
‖θ# − θpriv‖22 (11)

⇒ J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆

2n
‖θ# − θpriv‖22 (12)

Notice that J#(θ#;D) ≤ J#(θpriv;D), since θ# is the minimizer of J#(θ;D). Therefore, we have
the following:

bT θ# ≥ bT θpriv +
∆

2
‖θ# − θpriv‖22

⇒ bT (θ# − θpriv) ≥ ∆

2
‖θ# − θpriv‖22

⇒ ‖b‖2‖θ# − θpriv‖2 ≥
∆

2
‖θ# − θpriv‖22

⇒ ‖θ# − θpriv‖2 ≤
2‖b‖2

∆

Hence proved.

The following corollary bounds the difference in the values of the objective function J# at θpriv

and θ#. The gap is due to the noise variable b.

Corollary 25 Let θ# = arg minθ∈F Ĵ(θ;D) + ∆
2n‖θ‖

2
2 and let θpriv be the output of Algorithm 1

(Algorithm Obj-Pert ), where F ⊆ Rp is a closed convex set. Then

J#(θpriv;D)− J#(θ#;D) ≤ 2‖b‖22
∆n

where b is the noise vector in Algorithm 1.
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Proof From Equation 12 of the previous lemma, we have

J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆

2n
‖θ# − θpriv‖22

⇒ J#(θpriv;D)− J#(θ#;D) ≤ bT (θ# − θpriv)

n
− ∆

2n
‖θ# − θpriv‖22

⇒ J#(θpriv;D)− J#(θ#;D) ≤ ‖b‖2‖θ
# − θpriv‖2
n

⇒ J#(θpriv;D)− J#(θ#;D) ≤ 2‖b‖22
n∆

The last inequality follows from Lemma 24. This completes the proof.

D.1.1. PROOF OF LEMMA 3

Proof We have

Ĵ(θpriv;D)−Ĵ(θ̂;D) = (J#(θpriv;D)−J#(θ#;D))+(J#(θ#;D)−J#(θ̂;D))+
∆

2n
‖θ̂‖22−

∆

2n
‖θpriv‖22

Notice that (J#(θ#;D) − J#(θ̂;D)) ≤ 0. Also from Corollary 25 we have (J#(θpriv;D) −
J#(θ#;D)) ≤ 2‖b‖22

n∆ . Hence, we have

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤ 2‖b‖22
n∆

+
∆

2n
‖θ̂‖22

This completes the proof.

D.1.2. PROOF OF THEOREM 4

In order to prove Theorem 4, we prove the following which is a slightly generalized version. Re-

placing ∆ = Θ
(
ζp log p

ε‖θ̂‖2

)
in the first part of Theorem 26 and ∆ = Θ

(√
ζ2p log 1

δ

ε‖θ̂‖2

)
in the second

part of Theorem 26, we obtain Theorem 4. Since, we are looking at expected error in Theorem 4,
we ignore the term γ.

Theorem 26 Assuming that ‖ 5 `(θ; d)‖2 ≤ ζ (for all d ∈ P and for all θ ∈ F), the following are
true.

1. With Gamma density ν1, w.p. ≥ 1− γ

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
8ζ2p2 log2 p

γ

nε2∆
+

∆

2n
‖θ̂‖22

2. With Gaussian density ν2, w.p. ≥ 1− γ

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
4pζ2(8 log 2

δ + 4ε) log(1/γ)

nε2∆
+

∆

2n
‖θ̂‖22

25.27



KIFER SMITH THAKURTA

Proof The proof essentially goes via bounding ‖b‖2 under the two distributions ν1 and ν2 used in
Algorithm Obj-Pert (Algorithm 1) and plugging it in Lemma 3.

Recall that distribution ν1(b; ε, ζ) ∝ e
− ‖b‖2

2ζ . Thus, under the distribution ν1 for b, we have
‖b‖2 ∼ Γ(p, 2ζ

ε ). The following lemma from Chaudhuri et al. (2011) provides a tail bound for
Gamma distribution.

Lemma 27 (Lemma 4 from Chaudhuri et al. (2011)) Let X be a random variable drawn from
the distribution Γ(p, θ), where p is a positive integer. Then,

Pr

[
X ≥ pθ log

p

γ

]
≤ γ

Using Lemma 27, w.p. ≥ 1− γ we have the following:

‖b‖2 ≤
2pζ log p

γ

ε

Plugging in the value of ‖b‖2 from above into Lemma 3, we have w.p. ≥ 1− γ

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
8ζ2p2 log2 p

γ

nε2∆
+

∆

2n
‖θ̂‖22

This completes the proof of first part of the theorem.

For the second part, we need to bound ‖b‖2 when b ∼ N
(

0, Ip
ζ2(8 log 2

δ
+4ε)

ε2

)
. We use the

following lemma from Dasgupta and Schulman (2007).

Lemma 28 (Lemma 2 from Dasgupta and Schulman (2007)) PickX from the distributionN (0, Ip).
Then for any φ ≥ 1, we have

Pr[‖X‖2 ≥
√
φp] ≤ e−

p
2

(φ−1−log φ)

In the above lemma, in order to set e−
p
2

(φ−1−log φ) ≤ γ, we need 1 + 2
p log 1

γ ≤
φ
2 . Therefore,

setting φ as above, we have w.p. ≥ 1− γ,

‖X‖2 ≤
√

2 +
2

p
log

1

γ

√
p

⇒ ‖X‖2 ≤
√

2p log
1

γ

Using the above bound we have w.p. ≥ 1− γ,

‖b‖2 ≤

√
2pζ2

(
8 log 2

δ + 4ε
)

log 1
γ

ε2

Plugging in the value of ‖b‖2 from above into Lemma 3, we have w.p. ≥ 1− γ,

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
4pζ2(8 log 2

δ + 4ε) log(1/γ)

nε2∆
+

∆

2n
‖θ̂‖22

This completes the proof of second part of the theorem.
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D.2. Estimating Generalization Error

Generalization error : In our presentation of generalization error we restrict ourselves to Gener-
alized Linear Models (GLM). In GLM, each data entry d in the dataset is of the form (y, x), where
y ∈ R and x ∈ Rp. The loss function `(θ; d) is of the form `GLM(xT θ; y), where d = (y, x).

Following is the generalization error bound we obtain as a corollary to Theorem 4 by using
(Shalev-Shwartz et al., 2009, Theorem 2) to convert from empirical risk to generalization error. In
the rest of the paper, we only concentrate on empirical risk as one can easily convert it to generaliza-
tion error via the result discussed above. For the simplicity of exposition, in this section we assume
that the regularizer 1

nr(θ) (in the loss J̄(θ;D)) is zero for all θ.

Theorem 29 Consider that for any data entry d = (y, x) (where y ∈ R and x ∈ Rp), ‖x‖2 ≤ R.
Also assume that |`′GLM(u; y)| ≤ L and |`′′GLM(u; y)| ≤ (ε∆)/(2R2), where u ∈ R and y ∈ R,
and the derivatives are w.r.t. u. When using Gaussian density ν2 for the noise vector b and setting

∆ = Θ

(√
(RL)2p log(1/δ)

ε‖θ̄‖2

)
, we have Eb

[
J̄(θpriv;P)− J̄(θ̄;P)

]
= O

(
(RL)
√
p log(1/δ)‖θ̄‖2
εn

)
.

The main takeaway from the above theorem is that if we assume ζ = RL and ‖θ̂‖2 ≈ ‖θ̄‖2 (see
Theorem 4), then asymptotically the generalization error is same as the empirical risk. Additionally,
comparing the private generalization error to the non-private one, we can show that the private
version is worse by a factor of

√
p.

Appendix E. Refined utility guarantees under stronger assumptions

E.1. Parameter Estimation Error bounds

Theorem 30 (Parameter estimation error) Under the assumption that ‖ 5 `(θ; d)‖2 ≤ ζ (for all
d ∈ P and for all θ ∈ F), the following are true for Algorithm 1.

1. When using the Gaussian density ν2 and ψ ≥
√

32pζ
√

(8 log 2
δ

+4ε) log(1/γ)

ε(∆+η) + 2
√

∆
(∆+η)‖θ̂‖2,

then w.p. ≥ 1− γ the following are true.

(a) ‖θpriv − θ#‖2 ≤
√

2pζ
√

(8 log 2
δ

+4ε) log(1/γ)

ε(∆+η)

(b) ‖θpriv − θ̂‖2 ≤
√

2pζ
√

(8 log 2
δ

+4ε) log(1/γ)

ε(∆+η) +
√

∆
(∆+η)‖θ̂‖2

Here ψ is the radius of the ball around θ̂ where L̂ is η
n -strongly convex.

Proof By assumption we have L̂(θ;D) is η/n-strongly convex in a ball of radius ψ around θ̂, where
θ̂ = arg minθ∈F L̂(θ;D). We will fix the value of ψ later.

Recall that

θpriv = arg min
θ∈F
L̂(θ;D) +

∆

2n
‖θ‖22 +

bT θ

n︸ ︷︷ ︸
Jpriv(θ;D)

25.29



KIFER SMITH THAKURTA

and
θ# = arg min

θ∈F
L̂(θ;D) +

∆

2n
‖θ‖22︸ ︷︷ ︸

J#(θ;D)

where b is the noise vector used in Algorithm Obj-Pert (Algorithm 1).
Assume for now that ψ ≥ 2

(
‖θpriv − θ#‖2 + ‖θ# − θ̂‖2

)
. We will remove this assumption as

we move along. The above assumption implies the following:

1. L̂(θ;D) is η
n -strongly convex in a ball of radius ‖θ# − θ̂‖2 around θ#.

2. L̂(θ;D) is η
n -strongly convex in a ball of radius ‖θpriv − θ#‖2 around θpriv.

In order to bound ‖θpriv − θ̂‖2, we first bound ‖θpriv − θ#‖2 and ‖θ# − θ̂‖2 individually. Since
‖θpriv − θ̂‖2 ≤ ‖θpriv − θ#‖2 + ‖θ# − θ̂‖2, we obtain the required bound.

Since θpriv is the minimizer of Jpriv(θ;D), the following is true from the definition of Jpriv.

Jpriv(θ#;D) ≥ Jpriv(θpriv;D) +
∆ + η

2n
‖θ# − θpriv‖22 (13)

⇒ J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆ + η

2n
‖θ# − θpriv‖22 (14)

Notice that J#(θ#;D) ≤ J#(θpriv;D), since θ# is the minimizer of J#(θ;D). Therefore we have
the following:

bT θ# ≥ bT θpriv +
∆ + η

2
‖θ# − θpriv‖22 (15)

⇒ bT (θ# − θpriv) ≥ ∆ + η

2
‖θ# − θpriv‖22 (16)

⇒ ‖b‖2‖θ# − θpriv‖2 ≥
1

2
‖θ# − θpriv‖22(∆ + η) (17)

⇒ ‖θ# − θpriv‖2 ≤
2‖b‖2

(∆ + η)
(18)

Here, η is the local strong convexity parameter.
In order to bound ‖θ# − θ̂‖2, we first notice the following:

L̂(θ̂) +
∆

2n
‖θ̂‖22 ≥ L̂(θ#) +

∆

2n
‖θ#‖22 +

∆ + η

2n
‖θ# − θpriv‖22 (19)

⇒ ∆‖θ̂‖22 ≥ (∆ + η)‖θ̂ − θ#‖22 (20)

⇒ ‖θ̂ − θ#‖2 ≤

√
∆

∆ + η
‖θ̂‖2 (21)

From Equations 18 and 21, it follows that

‖θpriv − θ̂‖2 ≤
2‖b‖2

(∆ + η)
+

√
∆

∆ + η
‖θ̂‖2
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Equations 18 and 21 also imply a bound on the radius ψ, so that the initial assumption ψ ≥
2
(
‖θpriv − θ#‖2 + ‖θ# − θ̂‖2

)
is true. We set ψ ≥ 2

(
2‖b‖2
(∆+η) +

√
∆

∆+η‖θ̂‖2
)

to satisfy the above
assumption.

From the tail bound calculations for ‖b‖2 in Appendix D.1.2, w.p. ≥ 1−γ we have the following.

• In Algorithm Obj-Pert (Algorithm 1) when the noise distribution is ν2, we have

‖b‖2 ≤

√
2pζ2

(
8 log 2

δ + 4ε
)

log 1
γ

ε2

Plugging in these bounds for ‖b‖2, completes the proof.

E.2. Proof of Theorem 5

In order to prove Theorem 5, we prove the following slightly generalized version. Substituting the
parameters from Assumption 1 in Theorem 31 and setting ∆ = 2λ/ε , we obtain Theorem 5. Note
that in Theorem 5 we ignore the term γ, since there we are dealing with expected error.

Theorem 31 When using the Gaussian distribution function ν2 and ψ ≥
√
pζ
√

log(1/δ) log(1/γ)

ε(∆+η) +√
∆

(∆+η)‖θ̂‖2, then w.p. ≥ 1− γ the following is true.

L̂(θpriv;D)− L̂(θ̂;D) = O

(
pζ2 log(1/δ) log(1/γ)

nε2(∆ + η)
+

∆

n
‖θ̂‖22

)
Here ψ is the radius of the ball around θ̂ where L̂ is η

n -strongly convex.

Proof Using Equation 14 from Appendix E.1 we have

J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆ + η

2n
‖θ# − θpriv‖22 (22)

⇒ J#(θpriv;D)− J#(θ#;D) ≤ bT (θ# − θpriv)

n
− ∆ + η

2n
‖θ# − θpriv‖22 (23)

⇒ J#(θpriv;D)− J#(θ#;D) ≤ ‖b‖2‖θ
# − θpriv‖2
n

(24)

The last step follows from Cauchy-Schwarz inequality. Recall that

L̂(θpriv;D)−L̂(θ̂;D) = (J#(θpriv;D)−J#(θ#;D))+(J#(θ#;D)−J#(θ̂;D))+
∆

2n
‖θ̂‖22−

∆

2n
‖θpriv‖22

Notice that J#(θ#;D)− J#(θ̂;D) ≤ 0. Using Equation 24 we have the following.

L̂(θpriv;D)− L̂(θ̂;D) ≤ ‖b‖2‖θ
# − θpriv‖2
n

+
∆

2n
‖θ̂‖22

The theorem follows from using the tail bounds for ‖b‖2 under the distributions ν1 and ν2 (see Ap-
pendix E.1) and Theorem 30.
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Appendix F. Exponential Mechanism based High-dimensional Regression

F.1. Details of Algorithm Exp-mech

Algorithm 4 Exponential Mechanism based feature selection (Exp-mech )

Require: dataset: D = {d1, . . . , dn}, privacy parameters: (ε, δ), loss function: L̂(θ;D) =
1
n

∑n
i=1 `(θ; di), dimensionality of the problem: p, number of data points: n, L2 penaliza-

tion parameter: ∆, support size of θ∗: s, closed convex set: F, α: bound on |`(θ; d)| restricted
to any support of size s and for any d ∈ T

1: For any s-sparse subspace Γ, let score function q(Γ;D) = min
θ∈FΓ

∑n
i=1 `(θ; di), where FΓ refers

to the vectors in F with support in Γ. Pick a subspace Γ̂ w.p. ∝ e−
ε

2α
q(Γ;D).

2: return Γ̂

F.1.1. PRIVACY

Theorem 32 Algorithm Exp-mech (Algorithm 4) is ε-differentially private.

Proof In order to prove the theorem, we bound the sensitivity of the score function q(Γ;D) (i.e., the
maximum absolute change in q(θ;D) when one entry of D is modified) via the following lemma.

Lemma 33 Sensitivity of the score function q(Γ;D) = min
θ∈FΓ

∑n
i=1 `(θ;D) is bounded by α ≥

max
θ∈FΓ,d∈T

`(θ; d), where Γ is any s-sparse subset and T is the domain from which the data entries

are drawn.

Proof Let D′ be any dataset which either has one entry more (less) than D. W.l.o.g. we assume
that D′ has one entry more as compared to D (i.e., D′ has entry dn+1 which D does not). To bound
the sensitivity of q we need to bound |q(Γ;D′)− q(Γ;D)| for any database pairs D and D′, and any
subset Γ of size at most s. The bound is as follows.

|q(Γ;D′)− q(Γ;D)| =
∣∣∣∣min
θ∈FΓ

nL̂(θ;D′)− min
θ∈FΓ

nL̂(θ;D)

∣∣∣∣
=

∣∣∣∣min
θ∈FΓ

(
nL̂(θ;D) + `(θ; dn+1)

)
− min
θ∈FΓ

(
nL̂(θ;D)

)∣∣∣∣
≤
∣∣∣∣min
θ∈FΓ

nL̂(θ;D) + max
θ∈FΓ

`(θ; dn+1)− min
θ∈FΓ

nL̂(θ;D)

∣∣∣∣
= max

Γ,θ∈FΓ,d∈T
`(θ; d) ≤ α

With this the bound in the above lemma follows.

Now for two datasets D and D′, the ratio of the probabilities for picking any support of size s is as
follows.

Pr[Γ̂(D) = Γ]

Pr[Γ̂(D′) = Γ]
≤ e−

εq(Γ;D)
2α

e−
εq(Γ;D′)

2α

·
∑

Γ e
− εq(Γ;D′)

2α∑
Γ e
− εq(Γ;D)

2α

≤ eε
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The lower bound of e−ε also follows symmetrically. With this the proof is complete.

F.2. Proof of Theorem 6

In order to prove Theorem 6, we prove a slightly more general version stated below. Since in
Theorem 6 we are dealing with expected error, we ignore the term γ.

Theorem 34 Assume that |`(θ; d)| ≤ α (for all θ ∈ FΓ, for all d ∈ T and for all support Γ of size
s). With probability ≥ 1− γ, we have

L̂(φ;D)− L̂(θsp;D) =
2αs log(p/γ)

εn

where φ = arg min
θ∈FΓ̂

L̂(θ;D) and Γ̂ is the support selected by Algorithm Exp-mech (Algorithm 4).

Proof Let Γmin be the support of size ≤ s which minimizes minθ∈F L̂Γ(θ;D) w.r.t. Γ. Recall that
Γ̂ is the support output by exponential sampling. Based on the distribution used for exponential
sampling, we have the following for any κ > 0.

Pr

[
min
θ∈FΓ̂

L̂(θ;D) ≥ min
θ∈FΓmin

L̂(θ;D) +
κ

n

]
≤
(
p

s

)
exp

(
− εκ

2α

)
⇒ Pr

[
min
θ∈FΓ̂

L̂(θ;D) ≥ L̂(θsp;D) +
κ

n

]
≤
(
p

s

)
exp

(
− εκ

2α

)
The last inequality follows from the fact that L̂(θsp;D) = minθ∈F L̂Γmin(θ;D). Setting the R.H.S.
≤ γ, we have κ ≤ 2αs

ε log p
γ . Thus w.p. ≥ 1− γ we have

L̂(φ;D)− L̂(θsp;D) ≤ 2αs

nε
log

p

γ

This completes the proof.

F.3. Proof of Theorem 7

In order to prove Theorem 7, we prove a slightly more general version stated below. Setting α =
4s2, ζ = 2s3/2, λ = s and ‖φ‖2 ≤

√
s, and substituting ∆ = Θ

(
s
ε

)
in Theorem 35 we obtain

the required bound for Theorem 7. (See Appendix H for an explanation about the setting of above
parameters.) Since in Theorem 7 we are dealing with expected error, we ignore the term γ.

Theorem 35 Let L̂(θ;D) be Ψ-strongly convex for a given dataset D when the support of θ ∈ F is
restricted to any set Γ of size ≤ s. Assuming that ‖`(θ; d)‖2 ≤ ζ, |`(θ; d)| ≤ α, λ is the bound on
the maximum eigenvalue of52` (for all θ ∈ FΓ, for all d ∈ T and for all support Γ of size s), with
probability ≥ 1− γ, the following is true.

L̂(θpriv;D)− L̂(θ∗;D) ≤
16sζ2(8 log 2

δ + 2ε) log(2/γ)

nε2(∆ + nΨ)
+

4αs

nε
log

2p

γ
+

∆

2n
‖φ‖22
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where φ = arg minθ∈FΓ̂
L̂(θ;D) and Γ̂ is the support chosen by Algorithm Exp-mech (Algorithm

4).

Proof We bound L̂(θpriv;D)− L̂(θ∗;D) in two parts A and B mentioned below.

L̂(θpriv;D)− L̂(θ∗;D) = L̂(φ;D)− L̂(θ∗;D)︸ ︷︷ ︸
A

+ L̂(θpriv;D)− L̂(φ;D)︸ ︷︷ ︸
B

Let us first concentrate on part A. From Theorem 34, w.p. ≥ 1− γ
2 we have

A ≤ 4αs

nε
log

2p

γ

Notice that after selecting Γ̂, the problem has reduced to a s-dimensional subspace. Now invoking
Theorem 31 restricted to the support Γ̂, setting the failure probability to γ/2 and plugging ε/2, w.p.
≥ 1− γ

2 we have

B ≤
16sζ2(8 log 2

δ + 2ε) log(2/γ)

nε2(∆ + nΨ)
+

∆

2n
‖φ‖22

Using the bounds for A and B above, Theorem 34 follows.

Appendix G. Efficient Feature Selection via Sample and Aggregate Framework

G.1. Details of Algorithm Samp-Agg

Algorithm 5 Samp-Agg : Sample and Aggregate based feature selection
Require: dataset: D = {d1, . . . , dn}, privacy parameter: ε, algorithm: Asupp, dimensionality of the

problem: p, number of data points: n, support size of θ∗: s, and number of blocks: k, convex
set F

1: Partition the dataset D into k blocks of size ψ = n
k each. Call the blocks D1, · · · ,Dk.

2: for i = 1 to k do
3: Set Vi = Asupp(Di, s,F) {Vi ∈ {0, 1}p is an indicator vector for the support. Asupp(·, s)

is guaranteed to produce a support of size at most s.}
4: end for
5: Set G = 1

k

∑k
i=1 Vi + Lap

(
2s
kε

)p {Lap(λ)p is a vector of i.i.d. Laplace r.v. with scaling
parameter λ.}

6: Γ̂← indices of the largest s-coordinates in G.
7: return Γ̂

G.2. Privacy Guarantee for Algorithm Samp-Agg (Algorithm 5)

Theorem 36 Algorithm Samp-Agg (Algorithm 5) is ε-differentially private.

Proof To prove the theorem, we notice that in Algorithm Samp-Agg each entry of the dataset D
lies in only one of the data blocks Di. Now consider the set of indicator vectors Vi ∈ {0, 1}n
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returned by Algorithm Asupp for each data block Di. One can view Vi ’s to be votes ∈ {0, 1} given
to each coordinate by the data block Di. We define a score function for any coordinate c ∈ [p] and

for any dataset D as q(c,D) = 1
k

k∑
i=1

Vi(c), where Vi(c) is the vote for coordinate c in the i-th block

and k is number of blocks. Notice that the sensitivity of the score function q is bounded by 1
k . This

means that by removing (adding) one entry from (to) D, one can change q(c,D) by at most 1
k for

any dataset D and for any c ∈ [p]. We now invoke the following theorem by Bhaskar et al. (2010).

Theorem 37 (Modified Theorem 4 from Bhaskar et al. (2010)) Let A = {a1, · · · , ap} be a set
of elements and let D be a dataset which assigns score q(a,D) to each element a ∈ A. Also let ∆q
be the upper bound on the sensitivity of q, i.e., by removing (adding) one entry from (to) D, one can
change q(a,D) by at most ∆q for any datasetD and for any a ∈ A. If one picks a set Γ̂ of s highest
entries from A based on the noisy scores defined by qnoisy(a,D) = q(a,D) + Lap

(
2s(∆q)

ε

)
, then Γ̂

is ε-differentially private.
Here Lap(κ) denotes the Laplace distribution with scaling parameter κ.

In Theorem 37, setting A to be the set of p-coordinates, ∆q = 1
k and setting privacy parameter

to ε, we have Γ̂ (the output of Algorithm Samp-Agg (Algorithm 5)) to be ε-differentially private.
This completes the proof.

G.3. Proof of Theorem 8

Proof To select a support Γ̂, Algorithm Samp-Agg (Algorithm 5) does the following. It first finds

A = 1
k

k∑
i=1

Vi, where Vi ∈ {0, 1}p is an indicator vector indicating whether a particular coordinate

∈ [p] is in the support for data block Di (see Line 5 of Algorithm Samp-Agg (Algorithm 5)). To
each coordinate of A, it independently adds noise Lap

(
2s
kε

)
. Call this noisy vector Anoise. Now Γ̂ is

the set of s coordinates with the highest value in Anoise.
By assumption, Asupp identifies the correct support Γ̂∗ for all k of the data blocks. This means

that the entries in A corresponding to the correct support has value one and all others are set to
zero. Let GOOD be the coordinates in Γ̂∗ and let BAD be the complementary set. Then for any
0 ≤ ψ ≤ 1, the following is true.

Pr[a coordinate∈ GOOD has value ≤ 1− ψ in Anoise] ≤
1

2
e−

ψεk
4s

By union bound, this in turn implies the following.

Pr[any coordinate∈ GOOD has value ≤ 1− ψ in Anoise] ≤
s

2
e−

ψεk
2s

Similarly,
Pr[any coordinate∈ GOOD has value ≥ ψ in Anoise] ≤

p

2
e−

ψεk
2s

Therefore,

Pr[any coordinate∈ GOOD is left out or any coordinate∈ BAD is chosen] ≤ pe−
ψεk
2s
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Setting ψ = 1
2 , we have the R.H.S. of the above expression to be p exp

(
− εk

4s

)
. Hence w.p. ≥

1− p exp
(
− εk

4s

)
, we have Γ̂ as the correct support.

This completes the proof.

G.4. Private Sparse Linear Regression via Sample and Aggregate Framework

We look at the following linear system: y = Xθ∗ + w, where the design matrix X ∈ Rn×p, output
vector y ∈ Rn×1, parameter vector θ∗ ∈ Rp (which is guaranteed to be s-sparse), and w ∈ Rn×1 is
a noise vector.

In order to obtain a private estimate of θ∗, we use Algorithm Samp-Agg (Algorithm 5) for
support selection and Algorithm Obj-Pert (Algorithm 1) for privately solving the convex opti-
mization problem restricted to the feature set selected. We define the loss function as L̂(θ;D) =
1

2n‖y − Xθ‖
2
2. Now as discussed in Algorithm Samp-Agg , we need to instantiate the Algorithm

Asupp which identifies the true support. To this end, we solve the following L1-penalized linear
regression (also known as LASSO) on each of the data blocks Di.

θ̂ ∈ arg min
θ∈F
L̂(θ;Di) +

Λ

n
‖θ‖1 (25)

One can guarantee that if the dataset follows some statistical conditions (namely, Ψ Restricted
Strong Convexity (RSC) [Assumption Sparse-Linear’ (Assumption 3)]), then ‖θ̂ − θ∗‖2 will be
small (Negahban et al., 2010). Since θ∗ has s-non-zero entries, picking the top s-coordinates of
θtemp (based on absolute value) will provide a good support. An implicit assumption here is that the
minimum absolute value of any non-zero coordinate of θ∗ is bounded away from zero.

Once the support Γ̂ is chosen via sample and aggregate framework, the low dimensional problem
is solved via Algorithm Obj-Pert (Algorithm 1). The details are provided in Algorithm 6. There
are two main features specific to this algorithm. First, the low-dimensional convex optimization (in
Line 5) is performed on a closed convex set F = {θ ∈ Rp : ‖θ‖∞ ≤ 1}. Our privacy proof needs
this bound to guarantee that 5L̂(θ;D) does not change by much if one entry is added (removed)
to (from) D. But bounding the convex set F means that we cannot use the results of objective
perturbation for unconstrained optimization (originally proposed by Chaudhuri et al. (2011) (see
Lemma 14)). This is where our privacy guarantee for constrained optimization (Lemma 21 and
Theorem 2) becomes useful. The other feature of Algorithm 6 is that we truncate the vector y to
form ynew. In the proof of Theorem 43 (utility theorem), we claim that truncating does not degrade
the utility.

G.4.1. PRIVACY ANALYSIS

Theorem 38 Algorithm 6 is (ε, δ)-differentially private.

Proof We prove the privacy in two stages. In the first stage we prove that Line 2 of Algorithm 6
is ε

2 -differentially private. The proof of this directly follows from Theorem 36. In the second stage,
we prove that Line 5 of Algorithm 6 is ( ε2 , δ)-differentially private. Using the composition property
of differential privacy (Dwork and Lei (2009)), we conclude that Algorithm 6 is (ε, δ)-differentially
private.
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Algorithm 6 Private Sparse Linear Regression
Require: dataset: D = (y,X), privacy parameters: ε and δ, sparsity parameter: Λ, dimensionality

of the problem: p, number of data points: n, support size of θ∗: s, L2 penalization: ∆
1: Define Asupp((y,X), s) as below:

• θ̂ ∈ arg min
θ∈Rp

1
2n‖y −Xθ‖

2
2 + Λ

n‖θ‖1

• Return the top s-coordinates of θ̂ based on absolute value.

2: Call Algorithm 5 with parametersD, ε2 ,Asupp, p, n, s, k =
√
n. Store the support returned as Γ̂.

3: Let ynew ∈ Rn s.t. ∀i ∈ [n], ynew(i) =


s if s < yi

−s if yi < −s
yi otherwise

4: For each row Xi of the matrix X , pick the top s-coordinates (in terms of absolute value) and
call it vi. If any ‖vi‖2 ≥

√
s, then set Xi =

√
sXi
‖Xi‖2 .

5: Call Algorithm 1 with the following parameters: i) Dataset D = (ynew, X), ii) Loss function
L̂(θ;D) = 1

2n‖ynew − 〈X, θ〉‖
2
2, iii) Sensitivity parameters ζ = 2s3/2 and λ = s, iv) Privacy

parameters ( ε2 , δ), v) Parameters s (dimensionality), n (size of the dataset), vi) Convex set
F = {θ ∈ Rp : ‖θ‖∞ ≤ 1, supp(θ) ⊆ Γ̂}, vii) L2 penalization ∆.

6: return The output returned by Algorithm 1.

To prove that Line 5 of Algorithm 6 is ( ε2 , δ)-differentially private, we first bound the term ζ
which is the upper bound on ‖5 `(θ; d)‖2 when θ ∈ F is restricted to any support Γ of size at most
s. The following lemma provides this bound.

Lemma 39 Let θ ∈ F is restricted to any support Γ of size at most s. We have ‖5`(θ; d)‖2 < 2s3/2

.

Proof Consider an y ∈ [−s, s] and a vector v ∈ Rp s.t. restricted to any support Γ of size s,
‖x|Γ‖2 ≤

√
s. Now consider d = (y, x) to be any data entry of the dataset D. We have the

following:

‖ 5 `(θ; d)‖2 =
1

2
‖ 5θ (y − 〈x|Γ, θ〉)2‖2

= ‖(y − 〈xΓ, θ〉)x|ΓT ‖2
≤ ‖y · x|Γ‖2 + ‖x|Γ‖2‖x|Γ‖1
≤ s3/2 + s3/2

< 2s3/2

The last inequality follows from the facts that each entry of y′new is between [−s, s], each row of
X restricted to the support Γ has L2-norm at most

√
s, and ‖θ‖∞ ≤ 1. Here restricting any vector

x ∈ Rp to support Γ means to set all the coordinates of x outside Γ to zero.

We now upper bound the maximum eigenvalue of52`Γ(θ;D) = 1
2(y − x|TΓθ)2, where y ∈ [−s, s]
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and x ∈ Rp with ‖x|Γ‖2 ≤
√
s. We have52`Γ(θ;D) = x|TΓx|Γ. From Lemma 40 below it follows

that the highest eigenvalue of x|TΓx|Γ is bounded by s.

Lemma 40 (Chaudhuri et al. (2011)) Let A =
∑

j wjx
T
j xj , for 1× p vectors xj . Then,

p∑
i=1

|λi(A)| ≤
∑
j

|wj | · ‖xj‖22

where λi is the i-th eigenvalue of A.

Setting ζ = 2s3/2 and λ = s, and invoking Theorem 2, it follows that Line 5 of Algorithm 6 is
( ε2 , δ)-differentially private.

G.4.2. UTILITY ANALYSIS

Lemma 41 Let Λ = 4σn1/4
√

log p and ∆ = Θ (s/ε). Under Assumption Sparse-Linear’
(Assumption 3) on the design matrices X1, · · · , X√n and noise vectors w1, · · · , w√n (correspond-
ing to data blocks D1, · · · ,D√n), if n ≥ (16σ

ΨΦ )4s2 log2 p, then Algorithm Asupp (in Line 1 of Algo-
rithm 6) outputs a set of size s which contains the correct support of θ∗.

Lemma 41 follows from (Negahban et al., 2010, Corollary 2). It roughly states that under
Assumption 3 (Assumption Sparse-Linear’ ), with high probability the L2 distance between θ̂ ∈
arg min

θ∈Rp
1

2n‖y − Xθ‖
2
2 + Λ

n‖θ‖1 and θ∗ roughly goes down as
√

s log p
n , where Λ is an appropri-

ately chosen parameter. This means that for sufficiently large n, w.h.p. the support of the top-s
coordinates of θ̂ is the support for θ∗. Following is a detailed proof for the above lemma.
Proof In order to prove Lemma 41, we first state the following lemma from Negahban et al. (2010).

Lemma 42 (Corollary 2 from Negahban et al. (2010)) Consider the optimization problem defined
as θ̂ arg min

θ∈Rp
1

2n‖y−Xθ‖
2
2 + 1

nΛ‖θ‖1, where y ∈ Rn is the response vector,Xn×p is the design ma-

trix. Under the assumption that the tuple (X,w) is (s,σ,Ψ)-well behaved, if we set Λ = 4σ
√
n log p,

then we have

‖θ̂ − θ∗‖22 ≤
64σ2

Ψ2

s log p

n

Here w is the noise in the linear system.

In order to use the above lemma, we observe the following. First, any design matrix (sub-
sampled from the original design matrix X) on which Asupp (defined in Line 1 of Algorithm 6)
executes has

√
n number of rows. (Here n is the number of rows in the original design matrix X .)

Second, note that by Assumption 3 (Assumption Sparse-Linear’ ) each of the
√
n design matrices

on which Asupp executes in Algorithm 6 follows restricted strong convexity. Thus, from Lemma 42
the following is true for each data block Di.

‖θ̂ − θ∗‖2 ≤
8σ

Ψ

√
s log p

n1/4
(26)
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Let Φ be the minimum absolute value of any non-zero coordinate of θ∗. Now, setting the R.H.S.
of Equation 26 to Φ

2 , we have n ≥ (16σ
αΦ )4s2 log2 p. This means that when n ≥ (16σ

ΨΦ )4s2 log2 p, for
any coordinate i ∈ [p] where θ∗(i) 6= 0, we have |θ̂(i)| ≥ Φ

2 . Similarly, for any coordinate i ∈ [p]

where θ∗(i) = 0, we have |θ̂(i)| < Φ
2 .

Thus, if we pick the top s coordinates (in terms of absolute value), then all the coordinates in
the support of θ∗ will be chosen. This completes the proof.

Theorem 43 (Theorem 44, special case) Let Λ = 4σn1/4
√

log p and ∆ = Θ (s/ε). Under As-
sumption Sparse-Linear’ (Assumption 3), if n ≥ (16σ

ΨΦ )4s2 log2 p, then w.p. ≥ 1−
(
p exp

(
− ε
√
n

8s

))
we have Eb

[
L̂(θpriv;D)− L̂(θ∗;D)

]
= O

(
1
nε

(
s4 log(1/δ)

nεΨ + s2
))

. Here b is the noise vector in
Algorithm Obj-Pert (Algorithm 1).

The above theorem (Theorem 43) almost follows directly from Lemma 41, and Theorems 4 and
8. In order to prove Theorem 43, we first prove a slightly general version below. Plugging in the
value of ∆ = Θ (s/ε) yields Theorem 43. Since we are dealing with expectation in Theorem 43,
we ignore the term γ.

Theorem 44 (Utility) Under the conditions of Lemma 41, w.p. ≥ 1 −
(
p exp

(
− ε
√
n

8s

)
+ γ
)

we
have

L̂(θpriv;D)− L̂(θ∗;D) ≤
64s4

(
8 log 2

δ + 2ε
)

log 1
γ

nε2(∆ + Ψ)
+

∆

2n
‖θEmp‖22

Here θEmp ∈ arg minθ∈FΓ̂
L̂(θ;D).

Proof We prove this theorem in two stages. In the first stage, we lower bound the probability with
which the correct support of θ∗ is chosen in Line 2 of Algorithm 6. In the second stage, we bound
the empirical risk for the optimization problem (restricted to the support Γ̂ chosen). Note that if the
correct support of θ∗ is chosen, then the empirical risk bound of the second stage corresponds to
the empirical risk bound for the actual problem. We conclude the proof by combining the failure
probabilities of stages one and two.

Stage one: From Lemma 41, it follows that Algorithm Asupp (see Line 1 of Algorithm 6) outputs
the correct support. Once the correct support is chosen, the problem reduces to an s-dimensional
problem.

Stage two: We complete the proof of stage two by invoking Theorem 31 with parameters ζ =
2s3/2, k =

√
n and dimensionality of the problem = s.
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Appendix H. Low-dimensional linear regression

Consider the linear regression problem,

y = Xθ∗ + w (27)

where the design matrix X ∈ Rn×p, output vector y ∈ Rn×1, parameter vector θ∗ ∈ Rp, and
w ∈ Rn×1 is a noise vector. We define the loss function for any given θ as L̂(θ;D) = 1

2n

∑n
i=1(yi−

〈Xi, θ〉)2, where yi is the i-th entry in the vector y and Xi is the i-th row of the matrix X . The
setting we are interested in is where each row of the design matrix X has L2 norm at most

√
p and

the parameter vector θ∗ has L2 norm at most
√
p. Notice that since we assume θ∗ and the rows of

X have norm at most
√
p, so truncating y into [−p, p] will not hurt utility guarantees. Therefore,

w.l.o.g. we assume that y ∈ [−p, p]. Also, since θ∗ is assumed to have norm at most
√
p, we

assume that the convex set over which the optimization is performed has L2 norm at most
√
p, i.e.,

F =
{
θ ∈ Rp : ‖θ‖2 ≤

√
p
}

.
A natural question is “when does the above parameters setting is meaningful?”. One possible

setting where it is meaningful is when each entry of the design matrix X is assumed to be constant
and each each entry of the parameter vector θ∗ is also assumed to be constant.

Under this setting we want to bound the gradient of 1
2(yi − 〈Xi, θ〉)2 by ζ for any θ ∈ F. It is

easy to see that the gradient is XT
i (yi − 〈Xi, θ〉). Therefore, under the choice of parameters in the

problem we have ζ = 2p3/2.
Similarly, to bound the maximum eigenvalue of 52 1

2(yi − 〈Xi, θ〉)2 by λ, we first notice that
the hessian is XT

i Xi. Since ‖Xi‖2 ≤
√
p, the maximum eigenvalue of the matrix is p. Hence, we

can set λ = p.
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